ADM6993F/FX

Fiber to Fast Ethernet Converter (TS1000 CPE Complied)

Communications

Edition 2005-11-28

Published by Infineon Technologies AG,

St.-Martin-Strasse 53,

81669 München, Germany
© Infineon Technologies AG 2005.

All Rights Reserved.

Attention please!

The information herein is given to describe certain components and shall not be considered as a guarantee of characteristics.
Terms of delivery and rights to technical change reserved.
We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.
Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

Revision History: 2005-11-28, Rev. 1.21
Previous Version:

Page/Date	Subjects (major changes since last revision)
$2003-03-05$	Rev.1.0: First release of ADM6993F
$2003-07-02$	Rev. 1.1: Added Section 4.2
$2003-10-06$	Rev. 1.2: Updated Section 2.2.5, 4.2.5, 4.2.12 \& 4.2.13
$2005-09-09$	Changed to the new Infineon format
$2005-09-09$	Rev. 1.2 changed to Rev. 1.21
$2005-11-28$	Minor change. Included Green package information

Trademarks

 QUAT ${ }^{\circledR}$, QuadFALC ${ }^{\circledR}$, SCOUT $^{\circledR}$, SICAT $^{\circledR}$, SICOFI ${ }^{\circledR}$, SIDEC $^{\circledR}$, SLICOFI ${ }^{\circledR}$, SMINT $^{\circledR}$, SOCRATES ${ }^{\circledR}$, VINETIC $^{\circledR}$, $10 B a s e V^{\circledR}$, 10BaseVX ${ }^{\circledR}$ are registered trademarks of Infineon Technologies AG. 10BaseS ${ }^{\top}{ }^{\top M}$, EasyPort ${ }^{\top M}$, VDSLite ${ }^{\mathrm{TM}}$ are trademarks of Infineon Technologies AG. Microsoft ${ }^{\circledR}$ is a registered trademark of Microsoft Corporation, Linux ${ }^{\circledR}$ of Linus Torvalds, Visio ${ }^{\circledR}$ of Visio Corporation, and FrameMaker ${ }^{\circledR}$ of Adobe Systems Incorporated.

ADM6993F/FX Data Sheet

Table of Contents

Table of Contents 4
List of Figures 6
List of Tables 7
1 Product Overview 8
1.1 Overview 8
1.2 Features 8
1.3 Block Diagram 9
1.4 Data Lengths Conventions 9
2 Interface Description 10
2.1 Pin Diagram 10
2.2 Pin Type and Buffer Type Abbreviations 11
2.3 Pin Descriptions 12
3 Function Description 22
3.1 OAM Engine 22
3.2 10/100M PHY Block 22
3.3 Auto Negotiation and Speed Configuration 23
3.3.1 Auto Negotiation 23
3.3.2 Speed Configuration 23
3.4 Switch Functional Description 24
3.4.1 Basic Operation 24
3.4.2 Address Learning 25
3.4.3 Address Recognition and Packet Forwarding 25
3.4.4 Address Aging 25
3.4.5 Buffers and Queues 25
3.4.6 Back off Algorithm 25
3.4.7 Inter-Packet Gap (IPG) 26
3.4.8 Illegal Frames 26
3.4.9 Half Duplex Flow Control 26
3.4.10 Full Duplex Flow Control 26
3.4.11 Broadcast Storm Filter 26
3.4.12 Auto TP MDIX Function 27
3.5 Converter Functional Description 27
3.5.1 Fault Propagation 27
3.5.2 Redundant Link 27
3.5.3 Loop-Back mode 28
3.5.4 Snooping mode 28
3.5.5 Fiber_SD LED 28
3.6 Serial Management Interface (SMI) Register Access 28
3.6.1 Preamble Suppression 29
3.6.2 Read EEPROM Register via SMI Register 29
3.6.3 Write EEPROM Register via SMI Register 30
3.7 Reset Operation 30
3.7.1 Write EEPROM Register via EEPROM Interface 30
4 Registers Description 31
4.1 EEPROM Registers 31
4.2 EEPROM Register Descriptions 33

ADM6993F/FX
Data Sheet

Table of Contents
4.2.1 EEPROM Register Format 35
5 Electrical Specification 53
5.1 DC Characterization 53
5.2 AC Characterization 53
6 Packaging 61

List of Figures

Figure 1 ADM6993F/FX Block Diagram 9
Figure 2 ADM6993F/FX Pin Assignment 10
Figure 3 SMI Read Operation 29
Figure 4 SMI Write Operation 29
Figure 5 Power on Reset Timing 54
Figure 6 EEPROM Interface Timing 54
Figure 7 10Base-Tx MII Input Timing 55
Figure 8 10Base-TX MII Output Timing 56
Figure 9 100Base-TX MII Input Timing 56
Figure 10 100Base-TX MII Output Timing 57
Figure 11 Reduce MII Timing 58
Figure 12 GPSI (7-wire) Input Timing 59
Figure 13 GPSI (7-wire) Output Timing 59
Figure 14 SMI Timing 60
Figure 15128 PQFP packaging for ADM6993F/FX 61

List of Tables

Table 1 Data Lengths Conventions 9
Table 2 ADM6993F/FX Abbreviations for Pin Type 11
Table 3 Abbreviations for Buffer Type 11
Table $4 \quad$ Port 0/1 Twisted Pair Interface (8 Pins) 12
Table 5 Port 2 (MII/RMII/GPSI) Interface (17 Pins) 12
Table 6 Port 1 Alternative MII Port Interface (17 Pins) 14
Table 7 LED Interface (13 Pins) 15
Table 8 EEPROM Interface (4 Pins) 17
Table 9 Configuration Interface (28 Pins) 18
Table 10 Ground/Power Interface (27 Pins) 20
Table 11 Miscellaneous (14 Pins) 21
Table 12 Speed Configuration 24
Table 13 Port Rising/Falling Threshold 26
Table 14 Drop Scheme for each queue 27
Table 15 SMI Read/Write Command Format 28
Table 16 EEPROM Register Map 31
Table 17 Registers Address SpaceRegisters Address Space 33
Table 18 Registers Overview 33
Table 19 Register Access Types 34
Table 20 Registers Clock DomainsRegisters Clock Domains 35
Table 21 Other Filter Regsiters 45
Table 22 Other Tag Port Rule 0 Registers 49
Table 23 Other Tag Port Rule 1 Regsiters 50
Table 24 Electrical Absolute Maximum Rating 53
Table 25 Recommended Operating Conditions 53
Table 26 DC Electrical Characteristics for 3.3V Operation 53
Table 27 Power on Reset Timing 54
Table 28 EEPROM Interface Timing 54
Table 29 10Base-Tx MII Input Timing 55
Table 30 10Base-TX MII Output Timing 56
Table 31 100Base-TX MII Input Timing 57
Table 32 100Base-TX MII Output Timing 57
Table 33 100Base-TX MII Output Timing 58
Table 34 GPSI (7-wire) Input Timing 59
Table 35 GPSI (7-wire) Output Timing 60
Table 36 SMI Timing 60

ADM6993F/FX
Data Sheet

Product Overview

1 Product Overview

Features and the block diagram.

1.1 Overview

The ADM6993F/FX is a single chip integrating two 10/100 Mbps MDIX TX/FX transceivers, a three-port 10/100M Ethernet L2 switch controller, and one OAM engine to meet demanding applications, including Fiber-to-Ethernet media converters, especially the fiber to the home (FTTH) media converters. The ADM6993F/FX feature set includes link pass through (LPT), TS1000 OAM frame receiving/processing/transmitting, programmable link status LED display, various loop-back modes, and one configurable MII ports for snooping/inserting OAM frame from/to 100Fx. The ADM6993FX is the environmentally friendly "green" package version.
The ADM6993F/FX supports priority features on Port-Base priority, VLAN TAG priority and IP TOS precedence checking at individual ports. This is done through a small low-cost micro controller to initialize or on-the-fly to configure. The priority of packets can be tagged based on TCP port number for the multi-media application.
The $2^{\text {nd }}$ MAC interface could be selected as TP/FX or MII/RMII/GPSI to connect with bridge devices for different media. The $3^{\text {rd }}$ MAC interface could be selected as MII/RMII/GPSI to connect with routing devices, and bridge devices for different media

On the media side of port0/1, the ADM6993F/FX supports auto MDIX 10Base-T/100Base-TX and 100Base-FX as specified by the IEEE 802.3 committee through uses of digital circuitry and high speed A/D.
ADM6993F/FX supports serial management interface (SMI) for a small low-cost micro controller to initialize or configure. It also provides port status for remote agent monitor and smart counter for port statistics.

$1.2 \quad$ Features

Main features:

- 3-port10/100M switch integrated with a 2-port PHY (10/100TX and 100FX) and $3^{\text {rd }}$ MAC port as GPSI/MII/RMII
- Embedded OAM engine complying with TS1000
- Provides TX<-->FX Converter modes with Link Pass Through (LPT)
- Configurables MII ports for snooping/inserting OAM frame from/to fiber PHY
- Built-in data buffer 6Kx64bit SRAM
- Up to 2k MAC Unicast addresses with a 4-way associative hashing table
- MAC address learning table with aging function
- Two queues per port for QoS purposes
- Port-base, 802.1p and TCP/IP ToS priority
- Store \& forward architecture
- Forwarding and filtering at non-blocking full wire speed
- $802.3 x$ flow control for full duplex and back-pressure for half duplex
- Supports Auto-Negotiation
- Packet lengths up to 1536 bytes.
- Broadcast storming filter
- Port-base VLAN/tag-base VLAN
- 16 entries of packet classification and marking or filtering for TCP/UDP Port Numbering, IP Protocol ID and Ethernet Type
- Serial Management Interface for low-end CPUs
- Provides port status for remote agent monitoring
- Provides smart counters for port statistics reporting
- 128 PQFP packaging with $2.5 \mathrm{~V} / 3.3 \mathrm{~V}$ power supply

ADM6993F/FX
Data Sheet

1.3 Block Diagram

Figure 1 ADM6993F/FX Block Diagram

1.4 Data Lengths Conventions

Table 1
qword
dword
word
byte
nibble

Data Lengths Conventions
64 bits
32 bits
16 bits
8 bits
4 bits

2 Interface Description

This chapter describes Pin Diagram, Pin Type and Buffer Type Abbreviations, and Pin Descriptions.

2.1 Pin Diagram

Figure 2 ADM6993F/FX Pin Assignment

ADM6993F/FX
Data Sheet

2.2 Pin Type and Buffer Type Abbreviations

Standardized abbreviations:

Table 2 ADM6993F/FX Abbreviations for Pin Type

Abbreviations	Description
I	Standard input-only pin. Digital levels.
O / O	Output. Digital levels.
AI	I (O is a bidirectional input/output signal.
AO	Input. Analog levels.
$\mathrm{Al/O}$	Output. Analog levels.
PWR	Input or Output. Analog levels.
GND	Power
MCL	Ground
MCH	Must be connected to Low (JEDEC Standard)
NU	Must be connected to High (JEDEC Standard)
NC	Not Usable (JEDEC Standard)

Table 3 Abbreviations for Buffer Type

Abbreviations	Description
Z	High impedance
PU1	Pull up, $10 \mathrm{k} \Omega$
PD1	Pull down, $10 \mathrm{k} \Omega$
PD2	Pull down, $20 \mathrm{k} \Omega$
TS	Tristate capability: The corresponding pin has 3 operational states: Low, high and high- impedance.
OD	Open Drain. The corresponding pin has 2 operational states, active low and tristate, and allows multiple devices to share as a wire-OR. An external pull-up is required to sustain the inactive state until another agent drives it, and must be provided by the central resource.
OC	Open Collector
PP	Push-Pull. The corresponding pin has 2 operational states: Active-low and active-high (identical to output with no type attribute).
OD/PP	Open-Drain or Push-Pull. The corresponding pin can be configured either as an output with the OD attribute or as an output with the PP attribute.
ST	Schmitt-Trigger characteristics
TTL	TTL characteristics

ADM6993F/FX
Data Sheet

2.3 Pin Descriptions

ADM6993F/FX pins are categorized into one of the following groups:

- Port 0/1 Twisted Pair Interface, 8 pins
- Port 2 (MII/RMII/GPSI) Interface, 17 pins
- Port 1 alternative MII Port Interface, 17 pins
- LED Interface, 13 pins
- EEPROM Interface, 4 pins
- Configuration Interface, 28 pins
- Ground/Power Interface, 27 pins
- Miscellaneous, 14 pins

Note: If not specified, all signals default to digital signals.

Table $4 \quad$ Port 0/1 Twisted Pair Interface (8 Pins)

Pin or Ball No.	Name	Pin Type	Buffer Type	Function
40	TXP_0	AO		Twisted Pair Transmit
50	TXP_1	AO		Output Positive.
41	TXN_0	AO		Twisted Pair Transmit
49	TXN_1	AO		Output Negative.
43	RXP_0	AI		Twisted Pair Receive
47	RXP_1	AI		Input Positive.
44	RXN_0	AI		Twisted Pair Receive Input Negative.
46	RXN_1	Al		

Table 5 Port 2 (MII/RMII/GPSI) Interface (17 Pins)

Pin or Ball No.	Name	Pin Type	Buffer Type	Function
87	P2TXD0	I/O	$\begin{aligned} & \text { TTL, PD, } \\ & 8 \mathrm{~mA} \end{aligned}$	Port 2 MII Transmit Data bit 0 Synchronous to the rising edge of TXCLK.
	FXMODE0			FXMODEO During power on reset, value will be latched by ADM6993F/FX at the rising edge of RESETL as bit 0 of FXMODE.
86	P2TXD1	I/O	$\begin{aligned} & \text { TTL, PD, } \\ & 8 \mathrm{~mA} \end{aligned}$	Port 2 MII Transmit Data bit 1 Synchronous to the rising edge of TXCLK.
	FXMODE1			FXMODE1 During power on reset, value will be latched by ADM6993F/FX at the rising edge of RESETL as bit 1 of FXMODE. FXMODE [1:0] Interface 00_{B}, Both Port0 \& Port1 are TP port 01_{B}, Port0 is TP port and Port1 is FX port 10_{B}, Port0 is TP port and Port1 is FX port (converter mode) 11_{B}, Both Port0 \& Port1 are FX port

ADM6993F/FX
Data Sheet

Table 5 Port 2 (MII/RMII/GPSI) Interface (17 Pins) (cont'd)

Pin or Ball No.	Name	Pin Type	Buffer Type	Function
85	P2TXD2	I/O	$\begin{aligned} & \text { TTL, PD, } \\ & 8 \mathrm{~mA} \end{aligned}$	Port 2 MII Transmit Data bit 2 Synchronous to the rising edge of TXCLK.
	P2BUSMD0			P2BUSMD0 During power on reset, value will be latched by ADM6993F/FX at the rising edge of RESETL as P2BUSMD0.
84	P2TXD3	I/O	PD, 8mA	Port 2 MII Transmit Data bit 3
	P2BUSMD1			P2BUSMD1 During power on reset, value will be latched by ADM6993F/FX at the rising edge of RESETL as P2BUSMD1. BUSMD[1:0] Interface $00_{B} \quad$, MII(Default) 01 ${ }^{\text {B }}$, RMII 10_{B}, GPSI
88	P2TXEN	I/O	PD, 8mA	Port 2 MII Transmit Enable Synchronous to the rising edge of TXCLK
	DISBP			DISBP. Disable Back Pressure $0_{B} \quad$, Enable back-pressure(Default) $1_{B} \quad$, Disable back-pressure
$\begin{aligned} & 108,107,106, \\ & 105 \end{aligned}$	P2RXD[3:0]	I	TTL, PD	Port 2 MII Receive Data bit 3 ~ 0
104	P2RXDV	1	TTL, PD	Port 2 MII Receive Data Valid
93	P2COL	I	TTL, PD	Port 2 MII Collision input
92	P2CRS	1	TTL, PD	Port 2 MII Carrier Sense
103	P2RXCLK	I	TTL, PD	Port 2 MII Receive Clock Input
90	P2TXCLK	1	TTL, PD	Port 2 MII Transmit Clock Input
96	P2LINKF	I	TTL, PU	P2LINKF This pin will be used to input the Link Status of Port2 $1_{B} \quad$, Link Fail
95	P2SPDTEN	I	TTL, PD	P2SPDTEN This pin will be used as Port 2 Speed Status input $1_{B} \quad, 10 \mathrm{M}$
94	P2DPHALF	I	TTL, PD	P2DPHALF This pin will be used as Port 2 Duplex Status input $1_{B} \quad$, Half Duplex

Table 6 Port 1 Alternative MII Port Interface (17 Pins)

Pin or Ball No.	Name	Pin Type	Buffer Type	Function
56	$\begin{aligned} & \text { P1TXD0 } \\ & \text { (PCS_P1RXD0) } \\ & \text { /CHIPID[0] } \end{aligned}$	I/O	$\begin{aligned} & \text { TTL, PD, } \\ & 8 \mathrm{~mA} \end{aligned}$	Port 1 MII Transmit Data bit 0/Chip ID Bit 0 During power on reset, value will be latched by ADM6993F/FX at the rising edge of RESETL as CHIPID[0]. This pin will become PCS_P1RXD0 if P1BUSMD[1:0] is 11. Synchronous to the rising edge of TXCLK.
55	P1TXD1 (PCS_P1RXD1) /CHIPID[1]	I/O	$\begin{aligned} & \text { TTL, PD, } \\ & 8 \mathrm{~mA} \end{aligned}$	Port 1 MII Transmit Data bit 1/Chip ID Bit 1 During power on reset, value will be latched by ADM6993F/FX at the rising edge of RESETL as CHIPID[1]. This pin will become PCS_P1RXD1 if P1BUSMD[1:0] is 11. Synchronous to the rising edge of TXCLK.
54	P1TXD2 (PCS_P1RXD2) /P1BUSMD0	I/O	$\begin{aligned} & \text { TTL, PU, } \\ & 8 \mathrm{~mA} \end{aligned}$	Port 1 MII Transmit Data bit 2/ Port 1 Bus Mode bit 0 During power on reset, value will be latched by ADM6993F/FX at the rising edge of RESETL as P1BUSMD0. This pin will become PCS_P1RXD2 if P1BUSMD[1:0] is 11. Synchronous to the rising edge of TXCLK. P1BUSMD[1:0] Interface $00_{\mathrm{B}} \quad$, MII (Power Down TX Phy) 01 B , RMII (Power Down TX Phy) 10_{B}, GPSI (Power Down TX Phy) 11 ${ }_{B}$, TP/FX (default)
53	P1TXD3 (PCS_P1RXD3) /P1BUSMD1	I/O	$\begin{aligned} & \text { TTL, PU, } \\ & 8 \mathrm{~mA} \end{aligned}$	Port 1 MII Transmit Data bit 3/ Port 1 Bus Mode bit 1 During power on reset, value will be latched by ADM6993F/FX at the rising edge of RESETL as P1BUSMD1. This pin will become PCS_P1RXD3 if P1BUSMD[1:0] is 11. Synchronous to the rising edge of TXCLK. P1BUSMD[1:0] Interface $00_{B} \quad$, MII (Power Down TX Phy) 01 B , RMII (Power Down TX Phy) 10_{B}, GPSI (Power Down TX Phy) 11 ${ }_{B}$, TP/FX (default)
59	$\begin{aligned} & \text { P1TXEN } \\ & \text { (PCS_P1RXDV) } \end{aligned}$	I/O	$\begin{aligned} & \text { TTL, PD, } \\ & 8 \mathrm{~mA} \end{aligned}$	Port 1 MII Transmit Enable This pin will become PCS_P1RXDV if P1BUSMD[1:0] is 11. Synchronous to the rising edge of TXCLK
83, 82, 81, 80	$\begin{aligned} & \text { P1RXD[3:0] } \\ & \text { (PCS_P1TXD[3: } \\ & 0] \text {) } \end{aligned}$	I	TTL, PD	Port 1 MII Receive Data bit $3 \sim 0$ These pins will become PCS_P1TXD[3:0] if P1BUSMD[1:0] is 11
60	P1RXDV (PCS_P1TXEN)	I	TTL, PD	Port 1 MII Receive Data Valid This pin will become PCS_P1TXEN if P1BUSMD[1:0] is 11
111	$\begin{aligned} & \text { P1COL } \\ & \text { (PCS_P1COL) } \end{aligned}$	I/O	TTL, PD	Port 1 MII Collision input This pin will become PCS_P1COL if P1BUSMD[1:0] is 11 and becomes an output pin

ADM6993F/FX
Data Sheet

Table 6 Port 1 Alternative MII Port Interface (17 Pins) (cont'd)
\(\left.$$
\begin{array}{l|l|l|l|l}\hline \text { Pin or Ball No. } & \text { Name } & \begin{array}{l}\text { Pin } \\
\text { Type }\end{array} & \begin{array}{l}\text { Buffer } \\
\text { Type }\end{array} & \text { Function } \\
\hline 112 & \begin{array}{l}\text { P1CRS } \\
\text { (PCS_P1CRS) }\end{array} & \text { I/O } & \text { TTL, PD } & \begin{array}{l}\text { Port 1 MII Carrier Sense } \\
\text { This pin will become PCS_P1CRS if P1BUSMD[1:0] is } \\
11 \text { and becomes an output pin }\end{array} \\
\hline 61 & \begin{array}{l}\text { P1RXCLK } \\
\text { (PCS_P1RXCLK } \\
\text { (}\end{array} & \begin{array}{l}\text { P1TXCLK } \\
\text { (PCS_P1TXCLK } \\
\text {) }\end{array} & \text { I/O } & \text { TTL, PD }\end{array}
$$ \begin{array}{l}Port 1 MII Transmit clock Input

This pin will become PCS_P1CRS if P1BUSMD[1:0] is

11 and becomes an output pin.\end{array}\right]\)| This pin will become PCS_P1CRS if P1BUSMD[1:0] is |
| :--- |
| 58 |
| 117 |
| 120 |

Table 7 LED Interface (13 Pins)

Pin or Ball No.	Name	Pin Type	Buffer Type	Function
113	LNKACT_0	I/O	$\begin{aligned} & \mathrm{TTL} \\ & \mathrm{PD} \\ & 8 \mathrm{~mA} \end{aligned}$	PORTO Link \& Active LED/Link LED. If LEDMODE_0 is 1 , this pin indicates both link status and RX/TX activity. When link status is LINK_UP, LNKACT_0 will be turned on. While PORT0 is receiving/transmitting data, LNKACT_0 will be off for 100 ms and then on for 100 ms . If LEDMODE_0 is 0 , this pin only indicates RX/TX activity.
	LED_DATA_0			Port0 LED DATA
	LEDMODE_0			LED mode for LINK/ACT LED of PORTO. During power on reset, value will be latched by ADM6993F/FX at the rising edge of RESETL as LEDMODE_0.

ADM6993F/FX
Data Sheet

Interface Description

Table 7 LED Interface (13 Pins) (cont'd)

Pin or Ball No.	Name	$\begin{array}{\|l\|} \hline \text { Pin } \\ \text { Type } \end{array}$	Buffer Type	Function
114	LNKACT_1	I/O	$\begin{array}{\|l} \hline \text { TTL } \\ \text { PD } \\ 8 \mathrm{~mA} \end{array}$	PORT1 Link \& Active LED/Link LED. If LEDMODE_2 is 1 , this pin indicates both link status and $R X / T X$ activity. When link status is LINK_UP, LNKACT_1 will be turned on. While PORT1 is receiving/transmitting data, LNKACT_1 will be off for 100 ms and then on for 100 ms . If LEDMODE_2 is 0 , this pin only indicates RX/TX activity.
	LED_DATA_1			Port1 LED DATA
	LEDMODE_1			LED mode DUPLEX/COL LED of PORT0 \& PORT1. During power on reset, value will be latched by ADM6993F/FX at the rising edge of RESETL as LEDMODE_1. If LEDMODE_1 is 1 , DUPCOL[1:0] will display both duplex condition and collision status. If LEDMODE[1] is 0 , only collision status will be displayed.
30	LEDMODE_2	1	$\begin{aligned} & \mathrm{TTL} \\ & \mathrm{PD} \end{aligned}$	LED mode for LINK/ACT LED of PORT1 $0_{B} \quad$, ACT 1B , LINK/ACT
124	DUPCOL_0	I/O	$\begin{array}{\|l\|} \hline \text { TTL } \\ \text { PD } \\ 8 \mathrm{~mA} \\ \hline \end{array}$	PORTO Duplex LED If LEDMODE_1 is 1 , this pin indicates both duplex condition and collision status. When FULL_DUPLEX, this pin will be turned on for PORTO. When HALF_DUPLEX and no collision occurs, this pin will be turned off. When HALF_DUPLEX and a collision occurs, this pin will be off for 100 ms and then on for 100 ms . If LEDMODE_ 1 is 0 , this pin indicates collision status. When in HALF_DUPLEX and a collision occurs, this pin will be off for 100 ms and turns on for 100 ms .
	LED_COL_0			Port0 Collision LED
	DIS_LEARN			Disable Address Learning. During power on reset, value will be latched by ADM6993F/FX at the rising edge of RESETL as DIS_LEARN. If DIS_LEARN is 1, MAC address learning will be disabled.
125	DUPCOL_1	I/O	$\begin{aligned} & \mathrm{TTL} \\ & \mathrm{PU} \\ & 8 \mathrm{~mA} \end{aligned}$	PORT1 Duplex If LEDMODE_1 is 1 , this pin indicates both duplex condition and collision status. When FULL_DUPLEX, this pin will be turned on for PORT1. When HALF_DUPLEX and no collision occurs, this pin will be turned off. When HALF_DUPLEX and a collision occurs, this pin will be off for 100 ms and then on for 100 ms . If LEDMODE_1 is 0 , this pin indicates collision status. When HALF_DUPLEX and a collision occurs, this pin will be off for 100 ms and turns on for 100 ms .
	LED_COL_1			Port1 Collision LED
	EN_OAM			Enable Internal OAM Frame Processor. During power on reset, value will be latched by ADM6993F/FX at the rising edge of RESETL as EN_OAM. If EN_OAM is 0, the internal OAM engine will be disabled.

ADM6993F/FX
Data Sheet

Interface Description

Table 7 LED Interface (13 Pins) (cont'd)

Pin or Ball No.	Name		Pin Type	Buffer Type
122	LDSPD_0	Function		
				TTL PU RmA

Table 8 EEPROM Interface (4 Pins)

Pin or Ball No.	Name	Pin Type	Buffer Type	Function
7	EEDO	I	TTL PU	EEPROM Data Output Serial data input from EEPROM. This pin is internal pull-up.
12	EECS/IFSEL	I/O	PD 4 mA	EEPROM Chip Select This pin is active high chip enabled for EEPROM. When RESETL is low, it will be tristate.

ADM6993F/FX
Data Sheet

Table 8 EEPROM Interface (4 Pins) (cont'd)

Pin or Ball No.	Name	Pin Type	Buffer Type	Function
11	EECK/SDC	I/O	TTL PU 4 mA	Serial Clock This pin is the EEPROM clock source. When RESETL is low, it will be tristate. This pin is internal pull-up.
8	EEDI	I/O	TTL PU 4 mA	EEPROM Serial Data Input This pin is the output for serial data transfer. When RESETL is low, it will be tristate.

Table 9 Configuration Interface (28 Pins)

Pin or Ball No.	Name	Pin Type	Buffer Type	Function 16

ADM6993F/FX
Data Sheet

Table 9 Configuration Interface (28 Pins) (cont'd)

Pin or Ball No.	Name	Pin Type	Buffer Type	Function
67	XOVEN	I	$\begin{aligned} & \text { TTL } \\ & \text { PD } \end{aligned}$	Auto-MDIX Enable. $0_{B} \quad$ D, Disable 1B E, Enable
68	P0_MDI	I	$\begin{aligned} & \text { TTL } \\ & \text { PU } \end{aligned}$	MDI/MDIX Control for PORTO This setting will be ignored if enable Auto-MDIX. $\begin{array}{\|ll} 0_{\mathrm{B}} & \text { MDIX, MDIX } \\ 1_{\mathrm{B}} & \text { MDI, MDI } \\ \hline \end{array}$
21, 20	$\begin{aligned} & \text { FTPR_MODE[1: } \\ & 0 \end{aligned}$	I	$\begin{aligned} & \text { TTL } \\ & \text { PD } \end{aligned}$	Fault Propagation Mode / Link Pass Through 00_{B}, FX fail -> UTP fail, UTP fail -> FX transmit OAM frame 01_{B}, FX fail -> UTP fail, UTP fail -> FX transmit FEFI $10_{B} \quad$ R, Reserved 11 ${ }_{B}$ D, Disable
99	LPBK_P0	I	$\begin{aligned} & \text { TTL } \\ & \text { PD } \end{aligned}$	Enable Loop Back Test for PORTO $0_{B} \quad$ D, Disable $1_{B} \quad \mathrm{E}$, Enable
98	LPBK_P1	I	$\begin{aligned} & \text { TTL } \\ & \text { PD } \end{aligned}$	Enable Loop Back Test for PORT1 D, Disable $1_{B} \quad \mathrm{E}$, Enable
97	LPBK_P2	I	$\begin{aligned} & \text { TTL } \\ & \text { PD } \end{aligned}$	Enable Loop Back Test for PORT2 D, Disable 1_{B} E, Enable
69	PD_DETECT	I	$\begin{aligned} & \text { TTL } \\ & \text { PD } \end{aligned}$	Power Failure Detected $0_{B} \quad$ N, Normal $1_{B} \quad$ TX, ADM6993F/FX will transmit an OAM frame to indicate power failure.
70	INSERT	I	$\begin{aligned} & \text { TTL } \\ & \text { PD } \end{aligned}$	Isolate TX portion of Internal OAM Engine to insert any frame from MII interface of PORT1 0_{B} D, Disable $1_{B} \quad \mathrm{E}$, Enable
71	MC_FAILURE	I	$\begin{aligned} & \mathrm{TTL} \\ & \mathrm{PD} \end{aligned}$	Media Converter (MC) Failure Detected $0_{B} \quad \mathbf{N}$, Normal $1_{B} \quad$ TX, ADM6993F/FX will transmit an OAM frame to indicate MC failure.
72	SFIELD_11	I	$\begin{aligned} & \text { TTL } \\ & \text { PD } \end{aligned}$	Bit 11 value of S Field in transmitted OAM frame
73	SFIELD_12	I	$\begin{aligned} & \text { TTL } \\ & \text { PD } \end{aligned}$	Bit 12 value of S Field in transmitted OAM frame
74	SFIELD_13	I	$\begin{aligned} & \text { TTL } \\ & \text { PD } \end{aligned}$	Bit 13 value of S Field in transmitted OAM frame
75	SFIELD_14	I	TTL PD	Bit 14 value of S Field in transmitted OAM frame
76	SFIELD_15	I	$\begin{aligned} & \mathrm{TTL} \\ & \mathrm{PD} \end{aligned}$	Bit 15 value of S Field in transmitted OAM frame

ADM6993F/FX
Data Sheet

Table 9 Configuration Interface (28 Pins) (cont'd)

Pin or Ball No.	Name	Pin Type	Buffer Type	Function
101	CHIP_DIS	I	TTL PD	Chip Disable $0_{B} \quad$ D, Disable $1_{B} \quad$ E, Enable
100	CAS_DIS	O	TTL $4 m A$	Disable Cascaded Chip $0_{B} \quad$ D, Disable $1_{B} \quad$ E, Enable
102	LPT_DIS	I	TTL PD	Link Pass Through Disable $0_{B} \quad$ E, Enable $1_{B} \quad$ D, Disable
29	BYPASS_PAUS	I	TTL	Bypass Frame The destination address is reserved IEEE MAC address $0_{B} \quad$ D, Disable $1_{B} \quad$ E, Enable

Table 10 Ground/Power Interface (27 Pins)

Pin or Ball No.	Name	Pin Type	Buffer Type	Function
42, 48	GNDTR	GND, A		Ground Used by AD receiver/transmitter block.
39, 51	VCCA2	PWR, A		2.5 V used for Analogue block
45	VCCAD	PWR, A		3.3 V used for TX line driver
36	GNDBIAS	GND, A		Ground Used by digital substrate
38	VCCBIAS	PWR, A		3.3 V used for bios block
33	GNDPLL	GND, A		Ground used by PLL
32	VCCPLL	PWR, A		2.5 V used for PLL
$\begin{aligned} & 13,52, \\ & 64,89, \\ & 109, \\ & 110 \end{aligned}$	GNDIK	GND, D		Ground used by digital core and pre-driver
$\begin{aligned} & \hline 9,10, \\ & 57,91, \\ & 115, \\ & 116 \end{aligned}$	VCCIK	PWR, D		2.5 V used for digital core and pre-driver
$\begin{aligned} & 77 \\ & 118, \\ & 119 \end{aligned}$	GNDO	GND, D		Ground used by digital pad
$\begin{aligned} & 79, \\ & 126, \\ & 127 \end{aligned}$	VCC3O	PWR, D		3.3 V used for digital pad.

ADM6993F/FX
Data Sheet

Interface Description

Table 11 Miscellaneous (14 Pins)

Pin or Ball No.	Name	Pin Type	Buffer Type	Function
6	INT\#	0	TTL OD 4mA	Interrupt This pin will be used to interrupt external management device. This is a low active and open drain pin.
15	SDIO	I/O	TTL PU 8mA	Serial Management Data This pin is in/out to PHY. When RESETL is low, this pin will be tristate.
14	SDC	I	$\begin{aligned} & \text { TTL } \\ & 8 \mathrm{~mA} \end{aligned}$	Serial Management Data Clock
78	CKO25M	0	TTL PU 8mA	50M output for RMII and 25M Clock output for others
34	CONTROL	AO		FET Control Signal The pin is used to control FET for 3.3 V to 2.5 V regulator.
37	RTX	A		TX Resistor
35	VREF	A		Analog Power Failure Detected
26	RC	I	$\begin{aligned} & \text { TTL } \\ & \text { ST } \end{aligned}$	RC Input for Power On Reset ADM6993F/FX sample pin RC as RESETL with the clock input from pin XI.
27	XI	AI		25M Crystal Input 25M Crystal Input. Variation is limited to $+/-50 \mathrm{ppm}$.
28	XO	AO		25M Crystal Output When connected to oscillator, this pin should left unconnected.
$\begin{aligned} & 31,62, \\ & 65,66 \end{aligned}$	NC			No Connection

3 Function Description

The ADM6993F/FX integrates a two 100Base-X physical layer device (PHY), two complete 10BaseT modules, a three-port 10/100 switch controller and memory into a single chip for both 10Mbps and 100 Mbps Ethernet switch operations. It also supports 100Base-FX operations through external fiber-optic transceivers. The device is capable of operating in either Full-Duplex or Half-Duplex mode in both 10 Mbps and 100 Mbps operations. Operation modes can be selected by hardware configuration pins, software settings of management registers, or determined by the on-chip auto negotiation logic.

The ADM6993F/FX consists of four major blocks:

- OAM Engine
- 10/100M PHY Block
- Switch Controller Block
- Built-in 6Kx64 SSRAM

3.1 OAM Engine

An OAM packet is used for exchanging the status between two end points of a fiber line. An OAM packet is not in the Ethernet packet format. The ADM6993F/FX supports OAM packets which follow TS-1000 standard Version 1. The OAM processor module locates between the MAC and fiber PHY. It's in charge of OAM packet transmission and reception. In transmission, it inserts the OAM packet in MII traffic, leaving a 96 bit-time gap between packets. If an OAM packet insertion request occurs when fiber port (port 1) is transmitting an user frame, the OAM processor will interrupt the user frame and insert the OAM packet. When receiving, the OAM processor module can detect the OAM packet from MII traffic. If the received packet is identified as an OAM packet, this packet will not be passed to the MAC.

3.2 10/100M PHY Block

The 100Base-X section of the device implements the following functional blocks:

- 100Base-X physical coding sub-layer (PCS)
- 100Base-X physical medium attachment (PMA)
- 100Base-X physical medium dependent (PMD)

The 10Base-T section of the device implements the following functional blocks:

- 10Base-T physical layer signaling (PLS)
- 10Base-T physical medium attachment (PMA)

The 100Base- X and 10Base-T sections share the following functional blocks:

- Clock synthesizer module
- MII Registers
- IEEE 802.3 u auto negotiation

The interfaces used for the communication between the PHY block and switch core is a MII interface.
An Auto MDIX function is supported. This function can be Enabled/Disabled using the hardware pin. A digital approach for the integrated PHY of the ADM6993F/FX has been adopted.

3.3 Auto Negotiation and Speed Configuration

3.3.1 Auto Negotiation

The Auto Negotiation function provides a mechanism for exchanging configuration information between two ends of a link segment and automatically selecting the highest performance mode of operations supported by both devices. Fast Link Pulse (FLP) Bursts provide the signaling used to communicate auto negotiation abilities between two devices at each end of a link segment. For further details regarding auto negotiation, refer to Clause 28 of the IEEE 802.3u specification. The ADM6993F/FX supports four different Ethernet protocols, so the inclusion of auto negotiation ensures that the highest performance protocol will be selected based on the ability of the link partner.
The auto negotiation function within the ADM6993F/FX can be controlled either by internal register access or by the use of configuration pins. If disabled, auto negotiation will not occur until software enables bit 12 in MII Register 0 . If auto negotiation is enabled, the negotiation process will commence immediately.
When auto negotiation is enabled, the ADM6993F/FX transmits the abilities programmed into the auto negotiation advertisement register at address 04_{H} via FLP bursts. Any combination of 10 Mbps , 100 Mbps , half duplex, and full duplex modes may be selected. Auto negotiation controls the exchange of configuration information. Upon successfully auto negotiating, the abilities reported by the link partner are stored in the auto negotiation link partner ability register at address 05_{H}.
The contents of the "auto negotiation link partner ability register" are used to automatically configure the highest performance protocol between the local and far-end nodes. Software can determine which mode has been configured by auto negotiation, by comparing the contents of register 04_{H} and 05_{H} and then selecting the technology whose bit is set in both registers of highest priority relative to the following list:

1. 100Base-TX full duplex (highest priority)
2. 100Base-TX half duplex
3. 10Base-T full duplex
4. 10Base-T half duplex (lowest priority)

The basic mode control register at address 0_{H} controls the enabling, disabling and restarting of the auto negotiation function. When auto negotiation is disabled, the speed selection bit (bit 13) controls switching between 10 Mbps or 100 Mbps operation, while the duplex mode bit (bit 8) controls switching between full duplex operation and half duplex operation. The speed selection and duplex mode bits have no effect on the mode of operations when the auto negotiation enable bit (bit 12) is set.
The basic mode status register at address 1_{H} indicates the set of available abilities for technology types (bit 15 to bit 11), auto negotiation ability (bit 3), and extended register capability (bit 0). These bits are hardwired to indicate the full functionality of the ADM6993F/FX. The BMSR also provides status on:

- Whether auto negotiation is complete (bit 5)
- Whether the Link Partner is advertising that a remote fault has occurred (bit 4)
- Whether a valid link has been established (bit 2)

The auto negotiation advertisement register at address 4_{H} indicates the auto negotiation abilities to be advertised by the ADM6993F/FX. All available abilities are transmitted by default, but writing to this register or configuring external pins can suppress any ability.
The auto negotiation link partner ability register at address 05_{H} indicates the abilities of the Link Partner as indicated by auto negotiation communication. The contents of this register are considered valid when the auto negotiation complete bit (bit 5 , register address 1_{H}) is set.

3.3.2 Speed Configuration

The twelve sets of four pins listed in Table 12 configure the speed capability of each channel of the ADM6993F/FX. The logic states of these pins are latched into the advertisement register (register address 4_{H}) for
auto negotiation purpose. These pins are also used for evaluating the default value in the base mode control register (register 0_{H}) according to Table 12.

In order to make these pins with the same Read/Write priority as software, they should be programmed to 11111111_{B} in case a user wishes to update the advertisement register through software.

Table 12 Speed Configuration

Advertis e all capabilit y	Advertis e single capabili ty	Paralle Idetect follow IEEE std.	Auto Negotiation (Pin \& EEPROM)	Speed (Pin \& EEPROM)	Duplex (Pin \& EEPROM)	Auto Negot iation	Advertise Capability				Parallel Detect Capability			
							$\begin{aligned} & 10 \\ & 0 F \end{aligned}$	$\begin{aligned} & 10 \\ & \mathbf{0 H} \end{aligned}$	$\begin{aligned} & 10 \\ & \hline \end{aligned}$	$\begin{aligned} & 10 \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & 10 \\ & 0 F \end{aligned}$	$\begin{aligned} & 10 \\ & 0 \mathrm{H} \end{aligned}$	$\begin{aligned} & 10 \\ & \mathrm{~F} \end{aligned}$	$\begin{aligned} & 10 \\ & \mathrm{H} \end{aligned}$
1	0	0	1	X	X	1	1	1	1	1	1	0	1	0
1	0	1	1	X	X	1	1	1	1	1	0	1	0	1
1	1	0	1	X	X	1	1	0	0	0	1	0	0	0
1	1	1	1	X	X	1	1	0	0	0	0	1	0	0
0	0	0	1	1	1	1	1	1	1	1	1	0	1	0
0	0	1	1	1	1	1	1	1	1	1	0	1	0	1
0	1	0	1	1	1	1	1	0	0	0	1	0	0	0
0	1	1	1	1	1	1	1	0	0	0	0	1	0	0
0	0	X	1	1	0	1	0	1	0	1	0	1	0	1
0	1	X	1	1	0	1	0	1	0	0	0	1	0	0
0	0	0	1	0	1	1	0	0	1	1	0	0	1	0
0	0	1	1	0	1	1	0	0	1	1	0	0	0	1
0	1	0	1	0	1	1	0	0	1	0	0	0	1	0
0	1	1	1	0	1	1	0	0	1	0	0	0	0	1
0	X	X	1	0	0	1	0	0	0	1	0	0	0	1
X	X	X	0	1	1	0	1	-	-	-	-	-	-	-
x	X	X	0	1	0	0	-	1	-	-	-	-	-	-
X	X	X	0	0	1	0	-	-	1	-	-	-	-	-
X	X	X	0	0	0	0	-	-	-	1	-	-	-	-

3.4 Switch Functional Description

The ADM6993F/FX uses a "store \& forward" switching approach for the following reason:
Store \& forward switches allow switching between different speed media (e.g. 10BaseX and 100BaseX). Such switches require the large elastic buffer especially bridging between a server on a 100Mbps network and clients on a 10 Mbps segment.

Store \& forward switches improve overall network performance by acting as a "network cache"
Store \& forward switches prevent the forwarding of corrupted packets by the frame check sequence (FCS) before forwarding to the destination port.

3.4.1 Basic Operation

The ADM6993F/FX receives incoming packets from one of its ports, searches in the Address Table for the Destination MAC Address and then forwards the packet to the other port within the same VLAN group, if appropriate. If the destination address is not found in the address table, the ADM6993F/FX treats the packet as a broadcast packet and forwards the packet to the other ports which are in the same VLAN group.

The ADM6993F/FX automatically learns the port number of attached network devices by examining the Source MAC Address of all incoming packets at wire speed. If the Source Address is not found in the Address Table, the device adds it to the table.

3.4.2 Address Learning

The ADM6993F/FX uses a hash algorithm to learn the MAC address and can learn up to 2K MAC addresses. An Address is stored in the Address Table. The ADM6993F/FX searches for the Source Address (SA) of an incoming packet in the Address Table and acts as below:
If the SA was not found in the Address Table (a new address), the ADM6993F/FX waits until the end of the packet (non-error packet) and updates the Address Table. If the SA was found in the Address Table, then aging value of each corresponding entry will be reset to 0 .
When the DA is PAUSE command, then the learning process will be disabled automatically by ADM6993F/FX.

3.4.3 Address Recognition and Packet Forwarding

The ADM6993F/FX forwards the incoming packets between bridged ports according to the Destination Address (DA) as below. All the packet forwarding will check VLAN first. A forwarding port must be within the same VLAN as the source port.

1. If the DA is an UNICAST address and the address was found in the Address Table, the ADM6993F/FX will check the port number and acts as follows:
a) If the port number is equal to the port on which the packet was received, the packet is discarded.
b) If the port number is different, the packet is forwarded across the bridge.
2. If the DA is an UNICAST address and the address was not found, the ADM6993F/FX treats it as a multicast packet and forwards it across the bridge.
3. If the DA is a Multicast address, the packet is forwarded across the bridge.
4. If the DA is PAUSE Command (01-80-C2-00-00-01), then this packet will be dropped by ADM6993F/FX. ADM6993F/FX can issue and learn PAUSE command.
5. ADM6993F/FX will forward the packet with DA of (01-80-C2-00-00-00), filter out the packet with DA of (01-80-C2-00-00-01), and forward the packet with DA of (01-80-C2-00-00-02 ~ 01-80-C2-00-00-0F) decided by EEPROM Reg. 7_{H}.

3.4.4 Address Aging

Address aging is supported for topology changes such as an address moving from one port to the other. When this happens, the ADM6993F/FX internally has a 300 seconds timer and will aged out (remove) the address from the address table. Aging function can be enabled/disabled by user. Normally, disabling aging function is for security purpose.

3.4.5 Buffers and Queues

The ADM6993F/FX incorporates transmitted queues and the receiving buffer area for the three ETHERNET ports. The receiving buffers as well as the transmitted queues are located within the ADM6993F/FX along with the switch fabric. The buffers are divided into 192 blocks of 256 bytes each. The queues of each port are managed according to each port's read/write pointer.

3.4.6 Back off Algorithm

The ADM6993F/FX implements the truncated exponential back off algorithm compliant to the IEEE802.3 CSMA/CD standard. ADM6993F/FX will restart the back off algorithm by choosing 0-9 collision counts. The ADM6993F/FX resets the collision counter after 16 consecutive retransmit trials.

3.4.7 Inter-Packet Gap (IPG)

IPG is the idle time between any two successive packets from the same port. The typical number is 96-bits time. The value is $9.6 \mu \mathrm{~s}$ for 10 Mbps ETHERNET, and 960 ns for 100Mbps fast ETHERNET. ADM6993F/FX provides the option of a 92-bit gap in EEPROM to prevent packet lost when Flow Control is turned off and clock P.P.M. value differs.

3.4.8 Illegal Frames

The ADM6993F/FX will discard all illegal frames such as small packets (less than 64 bytes), oversized packets (greater than 1518 or 1522 bytes) and bad CRCs. Dribbling packing with good CRC value will be accepted by ADM6993F/FX. In case of bypass mode is enabled, ADM6993F/FX will support tagged packets up to 1522 bytes, and untagged packet with size up to 1518 bytes. In case of non-bypass mode, ADM6993F/FX will support tagged packets up to 1522bytes, and untagged packets up to 1518bytes.

3.4.9 Half Duplex Flow Control

Back Pressure function is supported for half-duplex operation. When the ADM6993F/FX cannot allocate a receiving buffer for an incoming packet (buffer full), the device will transmit a jam pattern on the port, thus forcing a collision. Back Pressure is enabled by the BPEN set during RESET asserting. An Infineon-ADMtek Co Ltd proprietary algorithm is implemented inside the ADM6993F/FX to prevent back pressure function causing HUB partitioned under heavy traffic environment and reduce the packet lost rate to increase the whole system performance.

3.4.10 Full Duplex Flow Control

When full duplex port runs out of its receiving buffer, a PAUSE packet command will be issued by ADM6993F/FX to notice the packet sender to pause the transmission. This frame based flow control is totally compliant to IEEE 802.3x. ADM6993F/FX can issue or receive pause packet.

3.4.11 Broadcast Storm Filter

If Broadcast Storming filter is enable, the broadcast packets over the rising threshold within 50 ms will be discarded by the threshold setting. See EEPROM Reg. 10_{H}.
Broadcast storm mode after initial:
Time interval: 50 ms
The max. packet number $=7490$ in 100Base, 749 in 10Base

Table 13 Port Rising/Falling Threshold
Per Port Rising Threshold

	00	01	10	11
All 100TX	Disable	10%	20%	40%
Not All 100TX	Disable	1%	2%	4%

Per Port Falling Threshold

	00	01	10	11
All 100TX	Disable	5%	10%	20%
Not All 100TX	Disable	0.5%	1%	2%

Table 14 Drop Scheme for each queue
Drop Scheme for each queue

Discard Mode	00	01	10	11
Utilization				
00	0%	0%	0%	0%
01	0%	0%	25%	50%
11	0%	25%	50%	75%

3.4.12 Auto TP MDIX Function

At normal application which Switch connects to NIC card is by one by one TP cable. If Switch connects other devices such as another Switch must be by two way. The first one is Cross Over TP cable. The second way is to use extra RJ45 which crosses over internal TX+- and RX+- signals. By the second way customers can use one by one cable to connect two Switch devices. All these efforts causes extra costs and are no good solutions. ADM6993F/FX provides Auto MDIX function which can adjust TX+- and RX+- at correct pin. Users can use one by one cable between ADM6993F/FX and other devices either switches or NICs.

3.5 Converter Functional Description

3.5.1 Fault Propagation

The ADM6993F/FX Media Converter incorporates a Fault Propagation feature, which allows indirect sensing of a Fiber Link Loss via the 10/100Base-TX UTP connection. Whenever the ADM6993F/FX Media Converter detects a Link Loss condition on the Receive fiber (Fiber LNK OFF), it disables its UTP link pulse so that a Link Loss condition will be sensed on the UTP port to which the ADM6993F/FX Media Converter is connected. This link loss can then be sensed and reported by a Network Management agent in the remote UTP port's host equipment. This feature will affect the ADM6993F/FX UTP LNK LED.

The ADM6993F/FX Media Converter also incorporates a Far End Fault feature, which allows the stations on both ends of a pairs of fibers to be informed when there is a problem with one of the fibers. Without Far End Fault, it is impossible for a fiber interface to detect a problem that affects only its Transmitting fiber.
When Far End Fault is supported and enabled, a loss of received signal (link) will cause the transmitter to generate a Far End Fault pattern in order to inform the device at the far end of the fiber pair that a fault has occurred. Unless Fiber Link Loss occurred, if the UTP port link fail, the ADM6993F/FX Media Converter will also generate a Far End Fault pattern in order to inform the device at the far end of the fiber pair that a fault has occurred.

3.5.2 Redundant Link

The ADM6993F/FX Media Converter incorporates a Redundant Link feature, which allows designing a costeffective Redundant TX FX Media Converter to provide a more reliable fiber link.

At converter mode (FXMODE[1:0]=10 and RDNT_EN=1), pin CAS_DIS of primary ADM6993F/FX connects to pin CHIP_DIS of secondary ADM6993F/FX.

- While FX port works well, pin CAS_DIS will output "1" to disable $2^{\text {nd }}$ ADM6993F/FX
- While FX fiber link loss or the remote fault detection happens, pin CAS_DIS will output "0" to enable $2^{\text {nd }}$ ADM6993F/FX.
- While ADM6993F/FX disables, TX port will become Hi-Z state.

3.5.3 Loop-Back mode

The ADM6993F/FX Media Converter incorporates a Loop-Back mode, which allows users or ISP to diagnose the local or the remote network equipment. The loop-back is used to check the operation of the switch and ensure the device's connection on the media side.

- While LPBK_P0=1, the received data from Port 1/Port 2 will be routed through the receiving path back to the transmitting path on Port 0 MII interface (between switch core and embedded port 0 PHY).
- While LPBK_P1=1, the received data from Port $0 /$ Port 2 will be routed through the receiving path back to the transmitting path on Port 1 MII interface (between switch core and embedded port 1 PHY).
- While LPBK_P2=1, the received data from Port $0 /$ Port 1 will be routed through the receiving path back to the transmitting path on Port 2 MII interface.
Note: The address learning, packet filter, CRC check, length check and loop-back function are not performed in snooping mode.

3.5.4 Snooping mode

The ADM6993F/FX Media Converter incorporates a Snooping mode, which allows packets perform cut-through between TX<-->FX while both TX and FX ports operate on 100M Full mode. On snooping mode, the packets will not enter the switch core to perform store and forward mechanisms.

- While SNP_EN=1, the ADM6993F/FX TX FX Media Converter will act TX<-->FX bridge while both TX and FX ports operate on 100M mode.
- While SNP_EN=0, the ADM6993F/FX TX FX Media Converter will force all packets to enter the switch core to perform store and forward mechanisms.

3.5.5 Fiber_SD LED

The ADM6993F/FX Media Converter provides a Fiber_SD LED on original LDSPD[1] pin. Fiber_SD is used to indicate the signal status of the fiber port.

3.6 Serial Management Interface (SMI) Register Access

The SMI consists of two pins, management data clock (SDC) and management data input/output (SDIO). The ADM6993F/FX is designed to support an SDC frequency up to 25 MHz . The SDIO line is bi-directional and may be shared with other devices.
The SDIO pin requires a $1.5 \mathrm{~K} \Omega$ pull-up which will pull SDIO to a logic " 1 " state during idle and turn around periods. ADM6993F/FX requires a single initialization sequence of 35 bits of preamble following power-up/hardware reset. The first 35 bits are preamble consisting of 35 contiguous logic "1" bits on SDIO and 35 corresponding cycles on SDC. Following preamble, the start-of-frame field is indicated by a <01> pattern. The next field signals the operation code (OP): <10> indicates read from management register operation, and <01> indicates write to management register operation. The next field is management register address. It is 10 bits wide and the most significant bit is transferred first.

Table 15 SMI Read/Write Command Format

Operation	Preamble	SFD	OP	CHIPID[1:0]	Unused	Register Address	TA	Data
Read	$35 " 1 " s$	01	10	2 bits CHIPID	00	6 bits Address	Z0	32 bits Data Read
Write	$35 " 1 " s$	01	01	2 bits CHIPID	00	6 bits Address	10	32 bits Data Write

During Read operation, a 2-bit turn around (TA) time spacing between the register address field and data field is provided for the SDIO to avoid contention. Following the turnaround time, a 32-bit data stream is read from or written into the management registers of the ADM6993F/FX.

Figure 3 SMI Read Operation

Figure 4 SMI Write Operation

3.6.1 Preamble Suppression

The SMI of ADM6993F/FX supports a preamble suppression mode. If the station management entity (i.e. MAC or other management controller) determines that all devices which are connected to the same SDC/SDIO in the system support preamble suppression, then the station management entity needs not to generate preamble for each management transaction. The ADM6993F/FX requires a single initialization sequence of 35 bits of preamble following power-up/hardware reset. This requirement is generally met by pulling-up the resistor of SDIO. While the ADM6993F/FX will respond to management accesses without preamble, a minimum of one idle bit between management transactions is required.
When ADM6993F/FX detects that there is an address matched, then it will enable Read/Write capability for external access. When an address is mismatched, then ADM6993F/FX will tri-state the SDIO pin.

3.6.2 Read EEPROM Register via SMI Register

The following 2 steps are for reading the data of EEPROM Register via SMI Interface.
Write the address of the desired EEPROM Register and READ command to SMI Register 04_{H}
EX. <35"1"s><01><01><00000><10011><10><000 $0000000 \underline{0000010000000000000000>~}$
CMD ADDRESS DATA
Read ADM6993F/FX Internal EEPROM mapping Reg. 1_{H}. Read SMI Register 04. The data of desired EEPROM Register will be in bit [15:0].
EX. $<35 " 1 " s><01><10><00000><10011><z 0><0000000000 \underline{000000} 0001000001001111>$
CMD ADDRESS DATA
Get ADM6993F/FX Internal EEPROM mapping Reg. 1_{H}. value 820 f .

ADM6993F/FX
Data Sheet

3.6.3 Write EEPROM Register via SMI Register

To write data into desired EEPROM Register, write the address of the EEPROM Register.

$$
\text { EX. }<35 " 1 " s><01><01><00000><00100><10><\frac{001}{\text { CMD ADDRESS DATA }} \frac{00000000000010001000001000000>}{0}
$$

Write ADM6993F/FX Internal EEPROM mapping Reg. 1_{H}. with value 820f.

3.7 Reset Operation

The ADM6993F/FX can be reset either by hardware or software. A hardware reset is accomplished by applying a negative pulse, with the duration of at least 100 ms to the RC pin of the ADM6993F/FX during normal operation to guarantee internal SSRAM is reset well.

Hardware reset operation samples the pins and initializes all registers to their default values. This process includes re-evaluation of all hardware configurable registers. A hardware reset affects all embedded PHYs in the device.
Software reset can reset all embedded PHYs and it does not latch the external pins nor reset the registers to their respective default value. This can be achieved by writing FF to EEPROM Reg. $3 \mathrm{~F}_{\mathrm{H}}$.
Logic levels on several I/O pins are detected during a hardware reset to determine the initial functionality of ADM6993F/FX. Some of these pins are used as output ports after reset operation.
Care must be taken to ensure that the configuration setup will not interfere with normal operations. Dedicated configuration pins can be tied to VCC or Ground directly. Configuration pins multiplexed with logic level output functions should be either weakly pulled up or weakly pulled down through external resistors.

3.7.1 Write EEPROM Register via EEPROM Interface

To write data into desired EEPROM Register via EEPROM interface:
If external EEPROM 93C46 or 93C66 exists, any WRITE programming instructions after EWEN instruction is executed can be updated effectively on EEPROM content and ADM6993F/FX internal mapping register at the same time.

If no external EEPROM exists, EECS/EECK/EEDI must be kept tri-state at least 100ms after hardware reset. Any WRITE programming instructions after EWEN instruction is executed can be updated effectively on ADM6993F/FX internal mapping register. Please notice that ADM6993F/FX can only identify 93C66-programming instructions if no external EEPROM.

ADM6993F/FX
Data Sheet

Registers Description

4 Registers Description

This chapter describes EEPROM Registers.

4.1 EEPROM Registers

Table 16 EEPROM Register Map

Register	Bit 15-8	Bit 7-0		Default Value
00 ${ }_{\text {H }}$	Signature			4154 ${ }_{\text {H }}$
$01_{\text {H }}$	Port 0 Configuration			$802 \mathrm{~F}_{\mathrm{H}}$
02_{H}	Port 1 Configuration			$802 \mathrm{~F}_{\mathrm{H}}$
03_{H}	Port 2 Configuration			$802 \mathrm{~F}_{\mathrm{H}}$
$04_{\text {H }}$	TOS priority Map Low	VLAN priority	Low	$\mathrm{FOFO}_{\mathrm{H}}$
$05_{\text {H }}$	Miscellaneous Configuration 0			C0
$06_{\text {H }}$	Miscellaneous Configuration 1			82E8 ${ }_{\text {H }}$
07_{H}	Miscellaneous Configuration 2			1480
08_{H}	Port 2 To Port Map	Port 1 To Port Map	Port 0 To Port Map	$777_{\text {H }}$
$09^{\text {H }}$	Filter Control Register 1	Filter Control	ster 0	O_{H}
$0 \mathrm{~A}_{\mathrm{H}}$	Filter Control Register 3	Filter Control	ster 2	O_{H}
OB_{H}	Filter Control Register 5	Filter Control	ster 4	O_{H}
$\mathrm{OCH}_{\mathrm{H}}$	Filter Control Register 7	Filter Control	ster 6	0^{H}
$0 \mathrm{D}_{\mathrm{H}}$	Filter Control Register 9	Filter Control R	ster 8	O_{H}
$0 \mathrm{E}_{\mathrm{H}}$	Filter Control Register 11	Filter Control R	ster 10	O_{H}
OF_{H}	Filter Control Register 13	Filter Control R	ster 12	O_{H}
$10^{\text {H }}$	Filter Control Register 15	Filter Control R	ster 14	O_{H}
11_{H}	Filter Type Register 0			0^{H}
12_{H}	Filter Type Register 1			O_{H}
13_{H}	Filter Register 0			0^{+}
14_{H}	Filter Register 1			O_{H}
15 ${ }_{\text {H }}$	Filter Register 2			O_{H}
16 ${ }^{\text {H }}$	Filter Register 3			O_{H}
17_{H}	Filter Register 4			O_{H}
$18_{\text {H }}$	Filter Register 5			O_{H}
19 ${ }_{\text {H }}$	Filter Register 6			O_{H}
$1 \mathrm{~A}_{\mathrm{H}}$	Filter Register 7			O_{H}
$1 \mathrm{~B}_{\mathrm{H}}$	Filter Register 8			O_{H}
$1 \mathrm{C}_{\mathrm{H}}$	Filter Register 9			0^{H}
$1 D_{H}$	Filter Register 10			O_{H}
$1 \mathrm{E}_{\mathrm{H}}$	Filter Register 11			O_{H}
$1 \mathrm{~F}_{\mathrm{H}}$	Filter Register 12			O_{H}
$20^{\text {H }}$	Filter Register 13			O_{H}
$21_{\text {H }}$	Filter Register 14			0_{H}

Table 16 EEPROM Register Map (cont'd)

Register	Bit 15-8	Bit 7-0	Default Value
22 ${ }_{\text {H }}$	Filter Register 15		0_{H}
23_{H}	PVID and PCID MASK of Port 0		$1_{\text {H }}$
24_{H}	PVID and PCID MASK of Port 0		$0_{\text {H }}$
25 ${ }^{\text {H }}$	PVID and PCID MASK of Port 1		$1_{\text {H }}$
$26_{\text {H }}$	PVID and PCID MASK of Port 1		$0_{\text {H }}$
27_{H}	PVID and PCID MASK of Port 2		$1_{\text {H }}$
$28_{\text {H }}$	PVID and PCID MASK of Port 2		$0_{\text {H }}$
29 ${ }_{\text {H }}$	Tag Rule 0		F000 ${ }_{\text {H }}$
$2 \mathrm{~A}_{\mathrm{H}}$	Tag Rule 0		$00 \mathrm{FF}_{\mathrm{H}}$
$2 \mathrm{~B}_{\mathrm{H}}$	Tag Rule 1		$\mathrm{FOOO}_{\mathrm{H}}$
$2 \mathrm{C}_{\mathrm{H}}$	Tag Rule 1		$00 \mathrm{FF}_{\mathrm{H}}$
$2 \mathrm{D}_{\mathrm{H}}$	Tag Rule 2		$\mathrm{FOOO}_{\mathrm{H}}$
$2 \mathrm{E}_{\mathrm{H}}$	Tag Rule 2		$00 \mathrm{FF}_{\mathrm{H}}$
$2 \mathrm{~F}_{\mathrm{H}}$	Tag Rule 3		F000 ${ }_{\text {H }}$
$3 \mathrm{H}_{\mathrm{H}}$	Tag Rule 3		$00 \mathrm{FF}_{\mathrm{H}}$
$31_{\text {H }}$	Tag Rule 4		$\mathrm{F} 000_{\mathrm{H}}$
$32_{\text {H }}$	Tag Rule 4		$00 \mathrm{FF}_{\mathrm{H}}$
33_{H}	Tag Rule 5		F000 ${ }_{\text {H }}$
34_{H}	Tag Rule 5		$00 \mathrm{FF}_{\mathrm{H}}$
$35^{\text {H }}$	Tag Rule 6		$\mathrm{FOOO}_{\mathrm{H}}$
36_{H}	Tag Rule 6		$00 \mathrm{FF}_{\mathrm{H}}$
37_{H}	Tag Rule 7		$\mathrm{FOOO}_{\mathrm{H}}$
$38_{\text {H }}$	Tag Rule 7		$00 \mathrm{FF}_{\mathrm{H}}$
39_{H}	Miscellaneous Configuration 2		0000_{H}
$3 \mathrm{~A}_{\mathrm{H}}$	Vendor Code[15:0]		$0^{0000}{ }_{H}$
$3 \mathrm{~B}_{\mathrm{H}}$	Model Number [7:0]	Vendor Code [23:16]	0000_{H}
$3 \mathrm{C}_{\mathrm{H}}$	Vendor Code[23:8]		0000_{H}

ADM6993F/FX
Data Sheet

Registers Description

4.2 EEPROM Register Descriptions

Table 17 Registers Address SpaceRegisters Address Space

Module	Base Address	End Address	Note
EEPROM	$? 0000_{H}$	$? ? ? ?_{H}$	

Table 18 Registers Overview

Register Short Name	Register Long Name	Offset Address	Page Number
SR	Signature Register	00_{H}	35
PCR_0	Port Configuration Register 0	01_{H}	35
PCR_1	Port Configuration Register 1	$02_{\text {H }}$	36
PCR_2	Port Configuration Register 2	03_{H}	37
VLAN_TOS_PMR	VLAN(TOS) Priority Map Register	04_{H}	38
MC_0	Miscellaneous Configuration 0	05_{H}	39
MCR_1	Miscellaneous Configuration Register 1	06_{H}	40
MCR_2	Miscellaneous Configuration Register 2	07_{H}	41
PBVLAN_MR	Port Base VLAN port Map Register	$08_{\text {H }}$	41
PCFC_1_0	Packet Filter Control Register 1 and 0	09_{H}	43
TFTR_0	Filter Type Register 0	11_{H}	44
TFTR_1	Filter Type Register 1	12_{H}	44
FR_0	Filter Register 0	13_{H}	45
FR_1	Filter Register 1	14_{H}	45
FR_2	Filter Register 2	15_{H}	45
FR_3	Filter Register 3	16_{H}	45
FR_4	Filter Register 4	17_{H}	45
FR_5	Filter Register 5	$18_{\text {H }}$	45
FR_6	Filter Register 6	19_{H}	45
FR_7	Filter Register 7	$1 \mathrm{~A}_{\mathrm{H}}$	45
FR_8	Filter Register 8	$1 \mathrm{~B}_{\mathrm{H}}$	45
FR_9	Filter Register 9	$1 \mathrm{C}_{\mathrm{H}}$	45
FR_10	Filter Register 10	$1 \mathrm{D}_{\mathrm{H}}$	45
FR_11	Filter Register 11	$1 \mathrm{E}_{\mathrm{H}}$	45
FR_12	Filter Register 12	$1 \mathrm{~F}_{\mathrm{H}}$	45
FR_13	Filter Register 13	20_{H}	45
FR_14	Filter Register 14	21_{H}	45
FR_15	Filter Register 15	22_{H}	45
PB_ID_0_0	Port Base VLAN ID and Mask 0 of Port 0	23_{H}	46
PB_ID_1_0	Port Base VLAN ID and Mask 1 of Port 0	24_{H}	46
PB_ID_0_1	Port Base VLAN ID and Mask 0 of Port 1	25_{H}	47
PB_ID_1_1	Port Base VLAN ID and Mask 1 of Port 1	26_{H}	47
PB_ID_0_2	Port Base VLAN ID and Mask 0 of Port 2	27_{H}	48
PB_ID_1_2	Port Base VLAN ID and Mask 1 of Port 2	$28_{\text {H }}$	48

ADM6993F/FX Data Sheet

Table 18 Registers Overview (cont'd)

Register Short Name	Register Long Name	Offset Address	Page Number
TPR_0_0	Tag Port Rule 0 Register 0	$29_{\text {H }}$	49
TPR_1_0	Tag Port Rule 1 Register 0	$2 \mathrm{~A}_{\mathrm{H}}$	49
TPR_0_1	Tag Port Rule 0 Register 1	$2 \mathrm{~B}_{\mathrm{H}}$	49
TPR_1_1	Tag Port Rule 1 Register 1	$2 \mathrm{C}_{\mathrm{H}}$	50
TPR_0_2	Tag Port Rule 0 Register 2	$2 \mathrm{D}_{\mathrm{H}}$	49
TPR_1_2	Tag Port Rule 1 Register 2	$2 \mathrm{E}_{\mathrm{H}}$	50
TPR_0_3	Tag Port Rule 0 Register 3	$2 \mathrm{~F}_{\mathrm{H}}$	49
TPR_1_3	Tag Port Rule 1 Register 3	$30_{\text {H }}$	50
TPR_0_4	Tag Port Rule 0 Register 4	31_{H}	49
TPR_1_4	Tag Port Rule 1 Register 4	32_{H}	50
TPR_0_5	Tag Port Rule 0 Register 5	33_{H}	49
TPR_1_5	Tag Port Rule 1 Register 5	34_{H}	50
TPR_0_6	Tag Port Rule 0 Register 6	35_{H}	49
TPR_1_6	Tag Port Rule 1 Register 6	36_{H}	50
TPR_0_7	Tag Port Rule 0 Register 7	37_{H}	49
TPR_1_7	Tag Port Rule 1 Register 7	$38_{\text {H }}$	50
MCR_3	Miscellaneous Configuration Register 3	39_{H}	50
MCR_4	Miscellaneous Configuration 4	$3 \mathrm{~A}_{\mathrm{H}}$	52
MCR_5	Miscellaneous Configuration Register 5	$3 \mathrm{~B}_{\mathrm{H}}$	52
MCR_6	Miscellaneous Configuration Register 6	$3 \mathrm{C}_{\mathrm{H}}$	52

The register is addressed wordwise.

Table 19 Register Access Types

Mode	Symbol	Description HW	Description SW
read/write	rw	Register is used as input for the HW	Register is readable and writable by SW
read	r	Register is written by HW (register between input and output -> one cycle delay)	Value written by software is ignored by hardware; that is, software may write any value to this field without affecting hardware behavior (= Target for development.)
Read only	ro	Register is set by HW (register between input and output -> one cycle delay)	SW can only read this register
Read virtual	rv	Physically, there is no new register, the input of the signal is connected directly to the address multiplexer.	SW can only read this register
Latch high, self clearing	Ihsc	Latches high signal at high level, clear on read	SW can read the register
Latch low, self clearing	Ilsc	Latches high signal at low-level, clear on read	SW can read the register
Latch high, mask clearing	Ihmk	Latches high signal at high level, register cleared with written mask	SW can read the register, with write mask the register can be cleared (1 clears)
Latch low, mask clearing	Ilmk	Latches high signal at low-level, register cleared on read	SW can read the register, with write mask the register can be cleared (1 clears)

ADM6993F/FX
Data Sheet

Registers Description

Table 19 Register Access Types (cont'd)

Mode	Symbol	Description HW	Description SW
Interrupt high, self clearing	ihsc	Differentiates the input signal (low- >high) register cleared on read	SW can read the register
Interrupt low, self clearing	ilsc	Differentiates the input signal (high- >low) register cleared on read	SW can read the register
Interrupt high, mask clearing	ihmk	Differentiates the input signal (high- >low) register cleared with written mask	SW can read the register, with write mask the register can be cleared
Interrupt low, mask clearing	ilmk	Differentiates the input signal (low- >high) register cleared with written mask	SW can read the register, with write mask the register can be cleared
Interruptenable register	ien	Enables the interrupt source for interrupt generation	SW can read and write this register
latch_on_reset	lor	rw register, value is latched after first clock cycle after reset	Register is readable and writable by SW
Read/write self clearing	rwsc	Register is used as input for the hw, the register will be cleared due to a HW mechanism.	Writing to the register generates a strobe signal for the HW (1 pdi clock cycle) Register is readable and writable by SW.

Table 20 Registers Clock DomainsRegisters Clock Domains

Clock Short Name	Description

4.2.1 EEPROM Register Format

Signature Register

Field	Bits	Type	Description
Signature	$15: 0$	ro	Signature $4154_{H} \quad$ SIG, Default (AT)

Port Configuration Register 0

ADM6993F/FX

Registers Description

PCR_0							Off	set						Reset	Value
Port C	nfigu	tion	egis				01								$20 \mathrm{~F}_{\mathrm{H}}$
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
BM			LTM			ANPD	ANSC	PBP		PR		DX	SP	ANE	FC
rw			rw			rw	rw	rw		rw		rw	rw	rw	rw

Field	Bits	Type	Description
BM	15	rw	Bypass Mode(TX packets same as RX) $1_{B} \quad$ E, Enable
LTM	14:10	rw	Limit Total MAC 00000_{B}, Disable Others $_{\mathrm{B}}$, Maximum total MAC
ANPD	9	rw	Port 0 Auto-Negotiation Parallel Detect Follow IEEE802.3 0_{B} B, Both $1_{B} \quad$ H, Half Only (Default)
ANSC	8	rw	Port 0 Auto-Negotiation Advertise Single Capability $0_{B} \quad$ E, Expand(Default) $1_{B} \quad$ S, Single
PBP	7	rw	Port-base priority
PR	6:4	rw	$\begin{aligned} & \text { Priority Rule/000 } \\ & 000_{\mathrm{B}}, \text { port base priority } \\ & 001_{\mathrm{B}}, \text { [TCP,TOS,TAG] } \\ & 010_{\mathrm{B}},[\text { TCP,TAG,TOS] } \\ & 011_{\mathrm{B}},[\text { TAG,TCP,TOS }] \\ & 100_{\mathrm{B}}, \text { [TOS,TAG] } \\ & 101_{\mathrm{B}}, \text { [TAG,TOS] } \end{aligned}$
DX	3	rw	Duplex This bit is unused if corresponding port is not connected to internal PHY $0_{B} \quad H D$, Half Duplex $1_{B} \quad$ FD, Full Duplex (Default)
SP	2	rw	Speed This bit is unused if corresponding port is not connected to internal PHY $\begin{array}{\|ll} 0_{B} & 10 \mathrm{M}, 10 \mathrm{Base}-\mathrm{T} \\ 1_{\mathrm{B}} & \mathbf{1 0 0 M}, 100 \mathrm{TX} \\ \hline \end{array}$
ANE	1	rw	Auto negotiation Enable This bit is unused if corresponding port is not connected to internal PHY $0_{B} \quad$ D, Disable Auto-negotiation $1_{B} \quad$ E, Enable Auto-negotiation. (Default)
FC	0	rw	802.3x Flow Control Command Ability

Port Configuration Register 1

ADM6993F/FX

Registers Description

PCR							Off							Reset	Value
Port	fig	tion	egis				02								20F $\mathrm{H}_{\text {}}$
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
BM			LTM			ANPD	ANSC	PBP		PR		DX	SP	ANE	FC
rw			rw			rw	rw	rw		rw		rw	rw	rw	rw

Field	Bits	Type	Description
BM	15	rw	Bypass Mode(TX packets same as RX) $1_{B} \quad$ E, Enable
LTM	14:10	rw	Limit Total MAC 00000_{B}, Disable Others ${ }_{B}$, Maximum total MAC
ANPD	9	rw	Port 1 Auto-Negotiation Parallel Detect Follow IEEE802.3 $0_{B} \quad$ B, Both $1_{B} \quad \mathrm{H}$, Half Only (Default)
ANSC	8	rw	Port 1 Auto-Negotiation Advertise Single Capability $0_{B} \quad$ E, Expand(Default) $1_{B} \quad \mathrm{~S}$, Single
PBP	7	rw	Port-base priority
PR	6:4	rw	Priority Rule/000 000_{B}, port base priority 001 ${ }_{\mathrm{B}}$, [TCP,TOS,TAG] 010 ${ }^{\text {B }}$, [TCP,TAG,TOS] 011 , [TAG,TCP,TOS] 100_{B}, [TOS,TAG] 101 , [TAG,TOS]
DX	3	rw	Duplex This bit is unused if corresponding port is not connected to internal PHY $\mathrm{O}_{\mathrm{B}} \quad$ HD, Half Duplex $1_{B} \quad$ FD, Full Duplex (Default)
SP	2	rw	Speed This bit is unused if corresponding port is not connected to internal PHY $\begin{array}{ll} 0_{B} & 10 \mathrm{M}, 10 \mathrm{Base}-\mathrm{T} \\ 1_{B} & 100 \mathrm{M}, 100 \mathrm{TX} \\ \hline \end{array}$
ANE	1	rw	Auto negotiation Enable This bit is unused if corresponding port is not connected to internal PHY $0_{B} \quad \mathrm{D}$, Disable Auto-negotiation $1_{B} \quad$ E, Enable Auto-negotiation. (Default)
FC	0	rw	802.3x Flow Control Command Ability

Port Configuration Register 2

ADM6993F/FX
Data Sheet

Registers Description

Field	Bits	Type	Description
BM	15	rw	$\begin{aligned} & \text { Bypass Mode(TX packets same as RX) } \\ & 1_{B} \quad \text { E, Enable } \end{aligned}$
LTM	14:10	rw	Limit Total MAC 00000_{B}, Disable Others $_{\mathrm{B}}$, Maximum total MAC
Res	9:8	ro	Reserved
PBP	7	rw	Port-base priority
PR	6:4	rw	Priority Rule/000 000_{B}, port base priority 001 ${ }_{\mathrm{B}}$, [TCP,TOS,TAG] 010_{B}, [TCP,TAG,TOS] 011 , [TAG,TCP,TOS] 100_{B}, [TOS,TAG] 101 ${ }_{\text {B }}$, [TAG,TOS]
DX	3	rw	Duplex This bit is unused if corresponding port is not connected to internal PHY $\begin{array}{\|ll\|} \hline 0_{B} & \text { HD, Half Duplex } \\ 1_{B} & \text { FD, Full Duplex (Default) } \\ \hline \end{array}$
SP	2	rw	Speed This bit is unused if corresponding port is not connected to internal PHY $\begin{array}{\|ll\|} \hline 0_{B} & 10 \mathrm{M}, 10 \mathrm{Base}-\mathrm{T} \\ 1_{\mathrm{B}} & 100 \mathrm{M}, 100 \mathrm{TX} \\ \hline \end{array}$
ANE	1	rw	Auto negotiation Enable This bit is unused if corresponding port is not connected to internal PHY $\begin{array}{\|ll\|} \hline 0_{B} & \text { D, Disable Auto-negotiation } \\ 1_{B} & \text { E, Enable Auto-negotiation. (Default) } \end{array}$
FC	0	rw	802.3x Flow Control Command Ability

VLAN(TOS) priority Map Register

VLAN_TOS_PMR
Offset
Reset Value
VLAN(TOS) Priority Map Register
04 ${ }_{H}$
$\mathrm{FOFO}_{\mathrm{H}}$

ADM6993F/FX
Data Sheet

15	14

Field	Bits	Type	Description
IP7	15	rw	Priority of the packet which (is?) the precedence field of IP header is $\mathbf{7}$
IP6	14	rw	Priority of the packet which the precedence field of IP header is 6
IP5	13	rw	Priority of the packet which the precedence field of IP header is 5
IP4	12	rw	Priority of the packet which the precedence field of IP header is 4
IP3	11	rw	Priority of the packet which the precedence field of IP header is 3
IP2	10	rw	Priority of the packet which the precedence field of IP header is 2
IP1	9	rw	Priority of the packet which the precedence field of IP header is 1
IP0	8	rw	Priority of the packet which the precedence field of IP header is 0
TAG7	7	rw	Priority of the packet which the priority field of TAG is 7
TAG6	6	rw	Priority of the packet which the priority field of TAG is $\mathbf{6}$
TAG5	5	rw	Priority of the packet which the priority field of TAG is 5
TAG4	4	rw	Priority of the packet which the priority field of TAG is 4
TAG3	3	rw	Priority of the packet which the priority field of TAG is 3
TAG2	2	rw	Priority of the packet which the priority field of TAG is $\mathbf{2}$
TAG1	1	rw	Priority of the packet which the priority field of TAG is $\mathbf{1}$
TAG0	0	rw	Priority of the packet which the priority field of TAG is 0

Note: O_{B} : low priority queue. Q01 ${ }_{B}$: High priority queue. Q1The weight ratio is 1:N. The default is Q0 for un-tagged and none IP frame.

Miscellaneous Configuration 0

```
MC_0
Offset
Reset Value
Miscellaneous Configuration 0
\(05_{H}\)
\(\mathrm{CO}_{\mathrm{H}}\)
```


Field	Bits	Type	Description
DM	$15: 12$	rw	Discard Mode (drop scheme for each queue)

ADM6993F/FX
Data Sheet

Registers Description

Field	Bits	Type	Description
VLAN	11	rw	Enable Replace VLAN ID 0 \&1 by PVID Checking of the length of CRS 1_{B}, Enable
PL	10	rw	$$
PQR	9:8	rw	Priority Queue ratio $\begin{array}{ll} 00_{\mathrm{B}} & , 1: 2 \\ 01_{\mathrm{B}} & , 1: 4 \\ 10_{\mathrm{B}} & , 1: 8 \\ 11_{\mathrm{B}} & , 1: 16 \end{array}$
Res	7:6	ro	Reserved
IPG	5	rw	IPG Leveling $\mathrm{O}_{\mathrm{B}} \quad, 96 \mathrm{BT} \text { (Default) }$ $1_{\mathrm{B}} \quad, 92 \mathrm{BT}$
Res	4:3	ro	Reserved
BSE	2	rw	Broadcast Storming Enable 1_{B} E, Enable
BST	1:0	rw	Broadcast Storming Threshold[1:0]

Miscellaneous Configuration Register 1

MCR_1	Offset	Reset Value
Miscellaneous Configuration Register 1	06_{H}	$82 \mathrm{E} 8_{\mathrm{H}}$

Field	Bits	Type	Description
Res	$15: 11$	ro	Reserved
ET	10	rw	Enable TENLMT $1_{B} \quad$, Enable limit traffic to 10M
CDP	9	rw	Check The Destination Port is in the same VLAN Group $1_{B} \quad$, Enable
EFM	8	rw	Emulated Force Mode for Port0 $0_{B} \quad$ D, Disable(Default) $1_{B} \quad$ E, Enable
Res	$7: 3$	ro	Reserved
DFFE	2	rw	DISFEFI(Disable Far End Fault/0)
DP	1	rw	Discard Packet after 16th Collision $0_{B} \quad$ D, Doesn't discard

ADM6993F/FX
Data Sheet

Registers Description

Field	Bits	Type	Description
AD	0	rw	Aging Disable $0_{B} \quad$ E, Enable Aging

Miscellaneous Configuration Register2

MCR_2	Offset	Reset Value
Miscellaneous Configuration Register 2	07_{H}	$\mathbf{1 4 8 0}_{\mathrm{H}}$

1514	1312	110	98	76	5	4	3	2	1	0
PFM1	PFM2	PFM3	PFM4	CPN						

Field	Bits	Type	Description
PFM1	15:14	rw	Packet Filtering Mode for Received DA= 0180 c2 000010 ~ 0180 c2 0000 ff
PFM2	13:12	rw	Packet Filtering Mode for Received DA= 0180 c2 000002 ~ 0180 c2 0000 Of
PFM3	11:10	rw	Packet Filtering Mode for Received DA= 0180 c2 000001 and OPCODE!= PAUSE
PFM4	9:8	rw	Packet Filtering Mode for Received DA= 0180 c2 000000
CPN	7:6	rw	CPU Port Number
Res	5:0	ro	Reserved

Packet Filtering Mode: 00_{B} : forward, 01_{B} : discard, 10_{B} : forward the packet to CPU port(defined in Bit [7:6] of register 0×07). if this packet is received from CPU Port, this packet will be forwarded to the VLAN group. 11_{B} : forward the packet to CPU port. if this packet is received from CPU Port, this packet will be discarded.

Port Base VLAN port Map Register

Registers Description

Field	Bits	Type	Description
LED	15	rw	Put Off LEDs of UTP port $0_{B} \quad$, always puts off LEDs of UTP port when UTP link down (is linked down or links down?) $1_{B} \quad$, LEDs of UTP port show DIPSW setting when auto-negotiation (is?) disable(d?) and link(ed?) down
IS	14	rw	$\begin{aligned} & \text { Idiot Setting } \\ & \mathrm{o}_{\mathrm{B}} \quad \begin{array}{l} \text {, Disable idiot setting, SUMO will send DIPSW setting to CO when } \\ \\ 1_{\mathrm{B}} \quad \begin{array}{l} \text { UTP port auto-negotiation (is?) enable(d) and link(ed?) down } \\ \\ \\ \text { UTP port auto-negotiation enable and link down } \end{array} \end{array} . \begin{array}{l} \text { UTetting, SUMO will always send } 10 \mathrm{MH} \text { to CO when } \end{array} \\ & \hline \end{aligned}$
MCF	13	rw	$\begin{aligned} & \text { MC Failure } \\ & 0_{B} \quad \text {, Asserts MC_FAILURE when load EEPROM fails } \\ & 1_{B} \quad \text {, Doesn't assert MC_FAILURE when load EEPOM fails } \end{aligned}$
LP	12	rw	```Link Partner \(0_{B} \quad\), if auto-negotiation is enabled, follows speed and duplex setting to negotiate with link partner. \(1_{B} \quad\), if auto-negotiation is enabled, always advertises full capability to its link partner.```
LEDL	11	rw	Put off LEDs of UTP port $0_{B} \quad$, Puts off LEDs of UTP port during loopback test . (default) $1_{B} \quad$, Doesn't put off LEDs of UTP port during loopback test.
PM2	10:8	rw	Port 2 To port Map
OAM	7	rw	```Transmit OAM Frame \(0_{B} \quad\), Transmitts one OAM frame if state changes or state notification request frame is received. (default) \(1_{B} \quad\), Transmitts three OAM frames if state changes or state notification request frame is received.```
PM1	6:4	rw	Port 1 To port Map
TF	3	rw	Transmitting Frame $0_{B} \quad$, Stops transmitting frame if PAUSE frame received. (default) $1_{B} \quad$, Doesn't stop transmitting frame if PAUSE frame received when flow control capability is disabled.
PMO	2:0	rw	Port 0 To port Map

ADM6993F/FX
Data Sheet

Registers Description

Packet Filter Control Registers 1 and 0

```
PCFC_1_0
```

Offset
Reset Value
Packet Filter Control Register 1 and 0
09_{H}
$\mathbf{0 0 0 0}_{\text {H }}$

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
APR2	APR1	APR0			OP14			APR2	APR1	APR0		OP13			
rw	rw	rw			rw			rw	rw	rw		rw			

Field	Bits	Type	Description
APR2	15	rw	Apply to Port 2 Rx $0_{B} \quad$ DNA, Do not apply $1_{B} \quad$ APL, Apply
APR1	14	rw	Apply to Port 1 Rx $0_{B} \quad$ DNA, Do not apply $1_{B} \quad$ APL, Apply
APR0	13	rw	Apply to Port 0 Rx $0_{B} \quad$ DNA, Do not apply $1_{B} \quad$ APL, Apply
OP14	$12: 8$	rw	OP Code for Filter Defined in Register $14_{H}\left(16_{H}, 18_{H}, 1 A_{H}, 1 C_{H}, 1 E_{H}, 20_{H}, 22_{H}\right)$
APR2	7	rw	Apply to Port 2 Rx $0_{B} \quad$ DNA, Do not apply $1_{B} \quad$ APL, Apply
APR1	5	rw	Apply to Port 1 Rx $0_{B} \quad$ DNA, Do not apply $1_{B} \quad$ APL, Apply
APR0	$4: 0$	rw	Apply to Port 0 Rx $0_{B} \quad$ DNA, Do not apply $1_{B} \quad$ APL, Apply
OP13	OP Code for Filter which is defined in Register $13_{H}\left(15_{H}, 11_{H}, 19_{H}, 1 B_{H}, 1 D_{H}, 1 F_{H}, 21_{H}\right)$		

OP Code bit[4:3]00 ${ }_{\mathrm{B}}$: Priority. Priority is defined in OP Code bit[2:0] ;01 ${ }_{\mathrm{B}}$: Discard. OP Code bit[2:0] is RESERVED and SHOULD keep always $0 ; 1 x_{B}$: RESERVED.

ADM6993F/FX

Registers Description

Filter Type Register 0

TFTR_0	Offset	Reset Value
Filter Type Register 0	11_{H}	0000_{H}

15	14	13	12	11	10	9	8	7	6	5	4	3

Field	Bits	Type	Description
TF_7	$15: 14$	rw	Type of Filter 7
TF_6	$13: 12$	rw	Type of Filter 6
TF_5	$11: 10$	rw	Type of Filter 5
TF_4	$9: 8$	rw	Type of Filter 4
TF_3	$7: 6$	rw	Type of Filter 3
TF_2	$5: 4$	rw	Type of Filter 2
TF_1	$3: 2$	rw	Type of Filter 1
TF_0	$1: 0$	rw	Type of Filter 0

00_{B} : TCP/UDP Port Number; 01_{B} : IP Protocol ID; 10_{B} : Ethernet Type; 11_{B} : RESERVED
Filter Type Register 1

TFTR_1	Offset	Reset Value
Filter Type Register 1	12_{H}	0000_{H}

1514	$13 \quad 12$	110	98	76	54	3	1
TF_15	TF_14	TF_13	TF_12	TF_11	TF_10	TF_9	TF_8

Field	Bits	Type	Description
TF_15	$15: 14$	rw	Type of Filter 15
TF_14	$13: 12$	rw	Type of Filter 14
TF_13	$11: 10$	rw	Type of Filter 13
TF_12	$9: 8$	rw	Type of Filter 12
TF_11	$7: 6$	rw	Type of Filter 11
TF_10	$5: 4$	rw	Type of Filter 10

ADM6993F/FX
Data Sheet

Registers Description

Field	Bits	Type	Description
TF_9	$3: 2$	rw	Type of Filter 9
TF_8	$1: 0$	rw	Type of Filter 8

$00_{\mathrm{B}}:$ TCP/UDP Port Number; 01_{B} : IP Protocol ID; 10_{B} : Ethernet Type; 11_{B} : RESERVED
Filter Register 0

```
FR_0 Offset Reset Value
Filter Register 0 13,
00000
```


Filter
rw

Field	Bits	Type	Description
Filter	$15: 0$	rw	Filter

Other Filter Registers have the same structure and characteristics as Filter Register 0; the offset addresses are listed in Table 21.

Table 21 Other Filter Regsiters

Register Short Name	Register Long Name	Offset Address	Page Number
FR_1	Filter Register 1	14_{H}	
FR_2	Filter Register 2	15_{H}	
FR_3	Filter Register 3	16_{H}	
FR_4	Filter Register 4	17_{H}	
FR_5	Filter Register 5	18_{H}	
FR_6	Filter Register 6	19_{H}	
FR_7	Filter Register 7	$1 \mathrm{~A}_{\mathrm{H}}$	
FR_8	Filter Register 8	$1 \mathrm{~B}_{\mathrm{H}}$	
FR_9	Filter Register 9	$1 \mathrm{C}_{\mathrm{H}}$	
FR_10	Filter Register 10	$1 \mathrm{D}_{\mathrm{H}}$	
FR_11	Filter Register 11	$1 \mathrm{E}_{\mathrm{H}}$	
FR_12	Filter Register 12	$1 \mathrm{~F}_{\mathrm{H}}$	
FR_13	Filter Register 13	20_{H}	
FR_14	Filter Register 14	21_{H}	
FR_15	Filter Register 15	22_{H}	

ADM6993F/FX
Data Sheet

Registers Description

Port Base VLAN ID and Mask 0 of Port 0

Port Base VLAN ID and Mask 1 of Port 0

PB_ID_1_0
Port Base VLAN ID and Mask 1 of Port 0

Offset
24 ${ }_{H}$

Reset Value $\mathbf{0 0 0 0}_{\mathrm{H}}$

rw rw rw

Field	Bits	Type	Description
LED	9	rw	Turn on all LED at the same time during LED self test $0_{\mathrm{B}} \quad$, Disable (Default) $1_{\mathrm{B}} \quad$, Enable
EPC	8	rw	Enable Polarity Checking by using IDLE Pulse $0_{\mathrm{B}} \quad$, Disable (Default) $1_{\mathrm{B}} \quad$, Enable
PVID	$7: 0$	rw	PVID Mask[11:4]

If (Tag Packet) then Tag $=\{$ TAGIN[15:12], ((TAGIN[11:0] \& ~MASK) | (PVID \& MASK)) \}|f (UnTag Packet) then Tag $=\left\{\right.$ PKT_PRT[2:0], 0_{B}, PVID $\}$

ADM6993F/FX
Data Sheet

Registers Description

Port Base VLAN ID and Mask 0 of Port 1

PB_ID_0_1

Offset
Reset Value
Port Base VLAN ID and Mask 0 of Port 1
$\mathbf{2 5}_{\mathrm{H}}$
$\mathbf{0 0 0 1}_{\text {H }}$

Field	Bits	Type	Description
DPRI	$15: 12$	rw	PVID Mask[3:0] Default Priority
PVID	$11: 0$	rw	PVID Port base VLAN ID

Port Base VLAN ID and Mask 1 of Port 1

PB_ID_1_1
Offset
Reset Value
Port Base VLAN ID and Mask 1 of Port 1
$\mathbf{2 6}_{\mathrm{H}}$
$\mathbf{0 0 0 0}_{\mathrm{H}}$

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Res								PVID							

rw

Field	Bits	Type	Description
PVID	$7: 0$	rw	PVID Mask[11:4]

If (Tag Packet) then Tag = \{TAGIN[15:12], ((TAGIN[11:0] \& ~MASK) | (PVID \& MASK)) \}|f (UnTag Packet) then Tag = \{PKT_PRT[2:0], 0_{B}, PVID $\}$

ADM6993F/FX
Data Sheet

Registers Description

Port Base VLAN ID and Mask 0 of Port 2

Port Base VLAN ID and Mask 1 of Port 2

PB_ID_1_2
Offset
Reset Value
Port Base VLAN ID and Mask 1 of Port 2
$\mathbf{2 8}_{\mathrm{H}}$
$\mathbf{0 0 0 0}_{\mathrm{H}}$

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Res								PVID							

rw

Field	Bits	Type	Description
PVID	$7: 0$	rw	PVID Mask[11:4]

If (Tag Packet) then Tag = \{TAGIN[15:12], ((TAGIN[11:0] \& ~MASK) | (PVID \& MASK)) \}|f (UnTag Packet) then Tag = \{PKT_PRT[2:0], 0_{B}, PVID $\}$

ADM6993F/FX
Data Sheet

Registers Description

Tag Port Rule 0 Register 0

Other Tag Port Rule 0 Registers have the same structure and characteristics as Tag Port Rule 0 Register 0; the offset addresses are listed in Table 22.

Table 22 Other Tag Port Rule 0 Registers

Register Short Name	Register Long Name	Offset Address	Page Number
TPR_0_1	Tag Port Rule 0 Register 1	$2 \mathrm{~B}_{\mathrm{H}}$	
TPR_0_2	Tag Port Rule 0 Register 2	$2 \mathrm{D}_{\mathrm{H}}$	
TPR_0_3	Tag Port Rule 0 Register 3	$2 \mathrm{~F}_{\mathrm{H}}$	
TPR_0_4	Tag Port Rule 0 Register 4	31_{H}	
TPR_0_5	Tag Port Rule 0 Register 5	33_{H}	
TPR_0_6	Tag Port Rule 0 Register 6	35_{H}	
TPR_0_7	Tag Port Rule 0 Register 7	37_{H}	

Tag Port Rule 1 Register 0

ADM6993F/FX
Data Sheet

Registers Description

Other Tag Port Rule 1 Registers have the same structure and characteristics as Tag Port Rule 1 Register 0; the offset addresses are listed in Table 23.

Table 23 Other Tag Port Rule 1 Regsiters

Register Short Name	Register Long Name	Offset Address	Page Number
TPR_1_1	Tag Port Rule 1 Register 1	$2 \mathrm{C}_{\mathrm{H}}$	
TPR_1_2	Tag Port Rule 1 Register 2	$2 \mathrm{E}_{\mathrm{H}}$	
TPR_1_3	Tag Port Rule 1 Register 3	30_{H}	
TPR_1_4	Tag Port Rule 1 Register 4	32_{H}	
TPR_1_5	Tag Port Rule 1 Register 5	34_{H}	
TPR_1_6	Tag Port Rule 1 Register 6	36_{H}	
TPR_1_7	Tag Port Rule 1 Register 7	38_{H}	

Miscellaneous Configuration Register 3

```
MCR_3
Offset
Reset Value
Miscellaneous Configuration Register 3
39H
00000
```


Field	Bits	Type	Description
OAM	15	rw	S7-S8 and S9 of OAM Frame show PHY status Disable $\mathrm{O}_{\mathrm{B}} \quad, \mathrm{S} 7-\mathrm{S} 8$ and S9 of OAM frame show PHY status if PHY link(s?) up. (default) $1_{B} \quad$, S7-S8 and S9 of OAM frame don't show PHY status if PHY link up.
LE	14	rw	Link Enable $\mathrm{O}_{\mathrm{B}} \quad$, Link Disable during Loop Back Test(default) $1_{B} \quad$, Link Enable during Loop Back Test
Res	13	ro	Reserved
RL	12	rw	Redundant Link $0_{B} \quad$, Enable Redundant Link in converter mode(default) 1_{B}, Disable Redundant Link
FP	11	rw	Fault Propagation $0_{B} \quad$, Enable Fault Propagation in converter mode(default) 1_{B}, Disable Fault Propagation
100S	10	rw	100M Snooping $0_{B} \quad$, Enable 100M snooping in converter mode(default) $1_{B} \quad$, Disable snooping

ADM6993F/FX
Data Sheet

Registers Description

Field	Bits	Type	Description
AP_P	$9: 7$	rw	All Packet/PPPOE $0_{\mathrm{B}} \quad, \quad$ all packets $1_{\mathrm{B}} \quad$, PPPOE only
Res	$6: 4$	ro	Reserved
PN_V	3	rw	Port Number/VLAN ID Base Grouping $0_{\mathrm{B}} \quad$, Port Number base grouping(default) $1_{\mathrm{B}} \quad$, Received VLAN ID base grouping
TAG	$2: 0$	rw	VLAN TAG $0_{\mathrm{B}} \quad$, Recognizes VLAN TAG automatically(default) $1_{\mathrm{B}} \quad$, Disable

ADM6993F/FX
Data Sheet

Registers Description

Miscellaneous Configuration Register 4

Field	Bits	Type	Description
VID	$15: 0$	rw	Vender ID Bit[15:0]

Miscellaneous Configuration Register 5

MCR_5	Offset	Reset Value
Miscellaneous Configuration Register 5	$3 B_{H}$	0000_{H}

Field	Bits	Type	Description
MN	$15: 8$	rw	Model Number Bit[7:0]
VID	$7: 0$	rw	Vender ID Bit[23:16]

Miscellaneous Configuration Register 6

MCR_6
Offset
Miscellaneous Configuration Register 6
$3 C_{H}$

Reset Value $\mathbf{0 0 0 0}{ }_{H}$

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

MN
rw

Field	Bits	Type	Description
MN	$15: 0$	rw	Model Number Bit[23:8]

ADM6993F/FX
Data Sheet

Electrical Specification

5 Electrical Specification

DC and AC.

5.1 DC Characterization

Table 24 Electrical Absolute Maximum Rating

Parameter	Symbol	Values			Unit	Note / Test Condition
		Min.	Typ.	Max.		
Power Supply	V_{CC}	-0.3		2.7	V	
Input Voltage	V_{IN}	-0.3		$\mathrm{~V}_{\mathrm{CC}}+0.3$	V	
Output Voltage	Vout	-0.3		$\mathrm{~V}_{\mathrm{CC}}+0.3$	V	
Storage Temperature	$T S T G$	-55		155	${ }^{\circ} \mathrm{C}$	
Power Dissipation	$P D$			990	mW	
ESD Rating	$E S D$			2	KV	

Table 25 Recommended Operating Conditions

Parameter	Symbol	Values				Unit
Note / Test Condition						
		Min.	Typ.	Max.		
Power Supply ${ }^{1}$		Vcc	3.135	3.3	3.465	V
Input Voltage	Vin	0	-	Vcc	V	
Junction Operating Temperature	$T j$	0	25	115	${ }^{\circ} \mathrm{C}$	

1) VCC3O. VCCBIAS

Table 26 DC Electrical Characteristics for 3.3 V Operation ${ }^{1)}$

Parameter	Symbol	Values			Unit	Note / Test Condition
		Min.	Typ.	Max.		
Input Low Voltage	VIL			0.8	V	TTL
Input High Voltage	$V I H$	2.0			V	TTL
Output Low Voltage	$V O L$			0.4	V	TTL
Output High Voltage	$V O H$	2.4			V	TTL
Input Pull_up/down Resistance	$R I$		50		$\mathrm{~K} \Omega$	$\mathrm{VIL}=0 \mathrm{~V}$ or VIH = Vcc
1) Under VCC $=3.0 \mathrm{~V} \sim 3.6 \mathrm{~V}, \mathrm{Tj}={ }^{\circ} \mathrm{C} \sim 115^{\circ} \mathrm{C}$						

5.2 AC Characterization

Power on Reset Timing, EEPROM Interface Timing, 10Base-Tx MII Timing, 100Base-Tx MII Timing, Reduce MII Timing, GPSI(7-wire) Timing, and SMI Timing.

ADM6993F/FX
Data Sheet

Electrical Specification

Power on Reset Timing

Figure 5 Power on Reset Timing

Table 27 Power on Reset Timing

Parameter	Symbol	Values			Unit	Note / Test Condition
		Min.	Typ.	Max.		
RST Low Period	$t_{\text {RST }}$	100			ms	TTL
Start of Idle Pulse Width	t_{CONF}	100			ns	TTL

EEPROM Interface Timing

Figure 6 EEPROM Interface Timing

Table 28 EEPROM Interface Timing

Parameter	Symbol	Values			Unit	Note / Test Condition
		Min.	Typ.	Max.		
EESK Period	$t_{\text {ESK }}$		5120		ns	
EESK Low Period	$t_{\text {ESKL }}$	2550		2570	ns	
EESK High Period	$t_{\text {ESKH }}$	2550		2570	ns	
EEDI to EESK Rising Setup Time	$t_{\text {ERDS }}$	10			ns	

ADM6993F/FX
Data Sheet

Electrical Specification

Table 28 EEPROM Interface Timing (cont'd)

Parameter	Symbol	Values			Unit	Note / Test Condition
		Min.	Typ.	Max.		
EEDI to EESK Rising Hold Time	$t_{\text {ERDH }}$	10			ns	
EESK Falling to EEDO Output Delay Time	$t_{\text {EWDD }}$			20	ns	

10Base-Tx MII Input Timing

10Base-Tx Input timing conditions

Figure 7 10Base-Tx MII Input Timing

Table 29 10Base-Tx MII Input Timing

Parameter	Symbol	Values			Unit	Note / Test Condition
		Min.	Typ.	Max.		
MII_RXCLK Period	$t C K$		400		ns	
MII_RXCLK Low Period	$t C K L$	160		240	ns	
MII_RXCLK High Period	$t C K H$	160		240	ns	
MII_CRS Rising to MII_RXDV Rising	$t C S V A$	0		10	ns	
MII_RXCLK Rising to MII_RXD, MII_RXDV, MII_CRS Output Delay	$t R X O D$	200			ns	

10Base-TX MII Output Timing

10Base-TX MII Output timing conditions

ADM6993F/FX Data Sheet

Electrical Specification

Figure 8 10Base-TX MII Output Timing

Table 30 10Base-TX MII Output Timing

Parameter	Symbol	Values			Unit	Note / Test Condition
		Min.	Typ.	Max.		
MII_TXCLK Period	$t C K$		400		ns	
MII_TXCLK Low Period	$t C K L$	160		240	ns	
MII_TXCLK High Period	$t C K H$	160		240	ns	
MII_TXD, MII_TXEN to MII_TXCLK Rising Setup Time	$t T X S$	10			ns	
MII_TXD, MII_TXEN to MII_TXCLK Rising Hold Time	$t T X H$	10			ns	

100Base-Tx MII Input Timing

100Base Tx MII Input timing conditions

Figure 9 100Base-TX MII Input Timing

ADM6993F/FX
Data Sheet

Electrical Specification

Table 31 100Base-TX MII Input Timing

Parameter	Symbol	Values			Unit	Note / Test Condition
		Min.	Typ.	Max.		
MII_RXCLK Period			40		ns	
MII_RXCLK Low Period	$t C K L$	16		24	ns	
MII_RXCLK High Period	$t C K H$	16		24	ns	
MII_CRS Rising to MII_RXDV Rising	$t C S V A$	0		10	ns	
MII_RXCLK Rising to MII_RXD, MII_RXDV, MII_CRS Output Delay	$t R X O D$	20		30	ns	

100Base-TX MII Output Timing

100Base-TX MII Output timing conditions

Figure 10 100Base-TX MII Output Timing

Table 32 100Base-TX MII Output Timing

Parameter	Symbol	Values			Unit	Note / Test Condition
		Min.	Typ.	Max.		
MII_TXCLK Period	$t C K$		40		ns	
MII_TXCLK Low Period	$t C K L$	16		24	ns	
MII_TXCLK High Period	$t C K H$	16		24	ns	
MII_TXD, MII_TXEN to MII_TXCLK Rising Setup Time	$t T X S$	10			ns	
MII_TXD, MII_TXEN to MII_TXCLK Rising Hold Time	$t T X H$	10			ns	

Reduce MII Timing

Reduce MII timing conditions

ADM6993F/FX Data Sheet

Electrical Specification

Figure 11 Reduce MII Timing

Table 33 100Base-TX MII Output Timing

Parameter	Symbol	Values			Unit	Note / Test Condition
		Min.	Typ.	Max.		
RMII_REFCLK Period	$t C K$		20		ns	
RMII_REFCLK Low Period	$t C K L$		10		ns	
RMII_REFCLK High Period	$t C K H$		10		ns	
TXEN, TXD to REFCLK rising setup time	$t T X S$	4			ns	
TXE, TXD to REFCLK rising hold time	$t T X H$	2			ns	
CSRDV, RXD to REFCLK rising setup time	$t R X S$	4		ns		
CRSDV, RXD to REFCLK rising hold time	$t R X H$	2			ns	

GPSI (7-wire) Input Timing

GPSI (7-wire) Input timing conditions

ADM6993F/FX Data Sheet

Electrical Specification
Ons

Figure 12 GPSI (7-wire) Input Timing

Table $34 \quad$ GPSI (7-wire) Input Timing

Parameter	Symbol	Values			Unit	Note / Test Condition
		Min.	Typ.	Max.		
GPSI_RXCLK Period			100		ns	
GPSI_RXCLK Low Period	$T C K L$	40		60	ns	
GPSI_RXCLK High Period	$T C K H$	40		60	ns	
GPSI_RXCLK Rising to GPSI_CRS/GPSI_COL Output Delay	TOD	50		70	ns	

GPSI (7-wire) Output Timing

GPSI (7-wire) Output timing conditions
(ans

Figure 13 GPSI (7-wire) Output Timing

ADM6993F/FX
Data Sheet

Electrical Specification

Table 35 GPSI (7-wire) Output Timing

	Symbol	Values			Unit	Note / Test Condition
		Min.	Typ.	Max.		
			100		ns	
GPSI_TXCLK Low Period	$T C K L$	40		60	ns	
GPSI_TXCLK High Period	$T C K H$	40		60	ns	
GPSI_TXD, GPSI_TXEN to GPSI_TXCLK Rising Setup Time	$T T X S$	10			ns	
GPSI_TXD, GPSI_TXEN to GPSI_TXCLK Rising Hold Time	TTXH	10			ns	

SMI Timing

Figure 14 SMI Timing

Table 36 SMI Timing

Parameter	Symbol	Values			Unit	Note / Test Condition
		Min.	Typ.	Max.		
SDC Period	T_{CK}	20			ns	
SDC Low Period	T_{CKL}	10			ns	
SDC High Period	T_{CKH}	10			ns	
SDIO to SDC rising setup time on read/write cycle	$T_{\text {SDS }}$	4			ns	
SDIO to SDC rising hold time on read/write cycle	$T_{\text {SDH }}$	2			ns	

$6 \quad$ Packaging

128 PQFP packaging for ADM6993F/FX

Figure 15128 PQFP packaging for ADM6993F/FX

